Chứng minh: n3 - 3n2 - n + 3 chia hết cho 48
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng minh rằng n3 + 2n chia hết cho 3 với mọi n ∈ N*
Với n=1 thì 1^3+2*1=3 chia hết cho 3
Với n>1 thì Giả sử n^3+2n chia hết cho 3
Chúng ta cần chứg minh (n+1)^3+2(n+1) chia hết cho 3
\(A=\left(n+1\right)^3+2\left(n+1\right)\)
\(=n^3+3n^2+3n+1+2n+2\)
=n^3+3n^2+5n+3
=n^3+2n+3n^2+3n+3n+3
=n^3+2n+3(n^2+n+n+1) chia hết cho 3
=>ĐPCM
Chứng minh rằng với mọi số tự nhiên lẻ n:
1. n2 + 4n + 8 chia hết cho 8
2. n3 + 3n2 - n - 3 chia hết cho 48
a.
Đề bài sai, ví dụ \(n=1\) lẻ nhưng \(1^2+4.1+8=13\) ko chia hết cho 8
b.
n lẻ \(\Rightarrow n=2k+1\)
\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n^2-1\right)\left(n+3\right)=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)
\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Do \(k\left(k+1\right)\left(k+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6
\(\Rightarrow8k\left(k+1\right)\left(k+2\right)\) chia hết cho 48
Chứng minh rằng với n ∈ N * : n 3 + 3 n 2 + 5 n chia hết cho 3
Cách 1: Quy nạp
Đặt An = n3 + 3n2 + 5n
+ Ta có: với n = 1
A1 = 1 + 3 + 5 = 9 chia hết 3
+ giả sử với n = k ≥ 1 ta có:
Ak = (k3 + 3k2 + 5k) chia hết 3 (giả thiết quy nạp)
Ta chứng minh Ak + 1 chia hết 3
Thật vậy, ta có:
Ak + 1 = (k + 1)3 + 3(k + 1)2 + 5(k + 1)
= k3 + 3k2 + 3k + 1 + 3k2 + 6k + 3 + 5k + 5
= (k3 + 3k2 + 5k) + 3k2 + 9k + 9
Theo giả thiết quy nạp: k3 + 3k2 + 5k ⋮ 3
Mà 3k2 + 9k + 9 = 3.(k2 + 3k + 3) ⋮ 3
⇒ Ak + 1 ⋮ 3.
Cách 2: Chứng minh trực tiếp.
Có: n3 + 3n2 + 5n
= n.(n2 + 3n + 5)
= n.(n2 + 3n + 2 + 3)
= n.(n2 + 3n + 2) + 3n
= n.(n + 1)(n + 2) + 3n.
Mà: n(n + 1)(n + 2) ⋮ 3 (tích của ba số tự nhiên liên tiếp)
3n ⋮ 3
⇒ n3 + 3n2 + 5n = n(n + 1)(n + 2) + 3n ⋮ 3.
Vậy n3 + 3n2 + 5n chia hết cho 3 với mọi ∀n ∈ N*
Chứng minh rằng:n3-2012 chia hết cho 48 với n chăn
Cho A = n3+3n2+2n. Chứng minh rằng A chia hết cho 3 với mọi số nguyên n
A=n3+n2+2n2+2n
=n2(n+1)+2n(n+1)
=(n+1)(n2+2n)
=n(n+1)(n+2)
Vì tích 3 số tự nhiên liên tiếp luôn chia hết cho 3
=>n(n+1)(n+2) luôn chia hết cho 3 với mọi
=>A luôn chia hết cho 3 với mọi số nguyên n.
Bài 1: Chứng minh rằng
a)a^5-a chia hết cho5
b) n^3+6n^2+8n chia hết cho 48 với mọi n chẵn
c) Cho a là số nguyên tố hớn hơn 3. CMR a^-1 chia hết cho 24
d) Nếu a+b+c chia hết cho 6 thì a^3+b^3+c^3 chia hết cho 6
e)2009^2010 không chia hết cho 2010
f) n^2+7n+22 không chia hết cho 9
Chứng minh rằng n3+3n2+ 2n chia hết cho 6 với mọi n ϵ Z
\(n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\) (vì là 3 số nguyên lt)
\(n^3+3n^2+2n-n\left(n^2+3n+2\right)\)
\(=n\left[n\left(n+1\right)+2\left(n+1\right)\right]=n\left(n+1\right)\left(n+2\right)\)
Là tích 3 số nguyên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3
\(\Rightarrow n^3+3n^2+2n=n\left(n+1\right)\left(n+2\right)⋮2.3=6\forall n\in Z\)
\(n^3+3n^2+2n\)
\(=n\left(n^2+3n+2\right)\)
\(=n\left(n+1\right)\left(n+2\right)⋮6\)
Cho 2a + 5 chia hết cho 7 . Chứng minh rằng 10a+11 chia hết cho 7
a + 5b chia hết 3 . Chứng minh rằng : 5a+3 chia hết 3
\(Tacó:\hept{\begin{cases}2a+5⋮7\\7a+7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}5a+2⋮7\\7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}10a+4⋮7\\7⋮7\end{cases}}\)
\(\Rightarrow10a+4+7=10a+11⋮7\left(dpcm\right)\)
b, tự tương
\(a,2a+5⋮7\Leftrightarrow2a+5+28a+28⋮7\) ( vì \(28a+28⋮7\) )
\(\Leftrightarrow30a+33⋮7\)
\(\Leftrightarrow3.\left(10a+11\right)⋮7\)
\(\Leftrightarrow10a+11⋮7\) ( vì \(\left(3;7\right)=1\) )
Vậy \(2a+5⋮7\Leftrightarrow10a+11⋮7\)
Câu b bn xem lại đề hộ mk chút nhé!
cho p và q là các số nguyên tố lớn hơn 3 (p>q ) chứng minh p2-q2-48 chia hết cho 24