Những câu hỏi liên quan
VH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NY
Xem chi tiết
NA
Xem chi tiết
NA
14 tháng 10 2016 lúc 12:10

giúp mk vs cần gấp lắm

Bình luận (0)
TH
Xem chi tiết
HD
14 tháng 10 2017 lúc 11:09

Bài này ở đâu vậy

Bình luận (0)
HD
14 tháng 10 2017 lúc 11:10

ggggggggggggggggg                   

Bình luận (0)
PT
22 tháng 2 2018 lúc 21:17

lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu

Bình luận (0)
NN
Xem chi tiết
PH
Xem chi tiết
AH
27 tháng 9 2018 lúc 22:09

Lời giải:

Đặt \(\underbrace{111...1}_{2019}=a\Rightarrow 9a+1=1\underbrace{00...000}_{2019}\)

Do đó:

\(AB+1=\underbrace{111....1}_{2019}(1\underbrace{000...00}_{2019}+5)+1\)

\(=a(9a+1+5)+1=9a^2+6a+1=(3a+1)^2\)

Vậy $AB+1$ là một số chính phương.

Bình luận (1)
LM
Xem chi tiết
SG
6 tháng 10 2016 lúc 22:32

a) 26.6101 + 1

= 64.(...6) + 1

= (...4) + 1

= (...5) chia hết cho 5, là hợp số

b) Vì 2001.2002.2003.2004.2005 chia hết cho 5; 10 chia hết cho 5

nên 2001.2002.2003.2004.2005 - 10 chia hết cho 5, là hợp số

c) Ta thấy: 1991.1992.1993.1994 có tận cùng là 4

=> 1991.1992.1993.1994 + 1 có tận cùng là 5, chia hết cho 5, là hợp số

d) Ta có: 

\(10\equiv1\left(mod3\right)\)

\(\Rightarrow10^{100}\equiv1\left(mod3\right)\) (1)

\(7\equiv1\left(mod3\right)\) (2)

Từ (1) và (2) \(\Rightarrow10^{100}-7⋮3\), là hợp số

e) Tổng các chữ số của 111...1 (2007 chữ số 1) là: 1 + 1 + 1 + ... + 1 = 2007 chia hết cho 3                                                      (2007 số 1)

=> 111...11 (2007 c/s 1) chia hết cho 3, là hợp số

f) Ta có: 1111...1 (2006 c/s 1)

= 1111...1000...0 + 1111...1

(1003 c/s 1)(1003 c/s 0)(1003 c/s 1)

= 1111...1.1000...0 + 1111...1

(1003 c/s 1)(1003 c/s 0)(1003 c/s 1)

= 1111...1.1000...01 chia hết cho 1111...1, là hợp số

(1003 c/s 1)(1002 c/s 0)             (1003 c/s 1)

Bình luận (0)