Những câu hỏi liên quan
HH
Xem chi tiết
NV
3 tháng 10 2023 lúc 18:02

Ta có với x,y,z >0 thì:\(\dfrac{x^2}{\sqrt{1-x^2}}=\dfrac{x^3}{x\sqrt{1-x^2}}\)
Bất đẳng thức Cô si ta có:
\(x\sqrt{1-x^2}\le\dfrac{x^2+1-x^2}{2}=\dfrac{1}{2}\\ \Rightarrow\dfrac{1}{x\sqrt{1-x^2}}\ge2\\ \Rightarrow\dfrac{x^3}{x\sqrt{1-x^2}}\ge2x^3\Leftrightarrow\dfrac{x^2}{\sqrt{1-x^2}}\ge2x^3\)
Tương tự: \(\dfrac{y^2}{\sqrt{1-y^2}}\ge2y^3;\dfrac{z^2}{\sqrt{1-z^2}}\ge2z^3\)
Từ đó ta có:\(\dfrac{x^2}{\sqrt{1-x^2}}+\dfrac{y^2}{\sqrt{1-y^2}}+\dfrac{z^2}{\sqrt{1-z^2}}\ge2\left(x^3+y^3+z^3\right)=2\left(dpcm\right)\)
 

Bình luận (0)
LG
Xem chi tiết
TH
19 tháng 12 2020 lúc 16:09

Từ \(x\left(\dfrac{1}{y}+\dfrac{1}{z}\right)+y\left(\dfrac{1}{z}+\dfrac{1}{x}\right)+z\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=-2\) ta có:

\(x^2y+y^2z+z^2x+xy^2+yz^2+zx^2+2xyz=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\z+x=0\end{matrix}\right.\).

Không mất tính tổng quát, giả sử x + y = 0

\(\Leftrightarrow x=-y\)

\(\Leftrightarrow x^3=-y^3\).

Kết hợp với \(x^3+y^3+z^3=1\) ta có \(z^3=1\Leftrightarrow z=1\).

Vậy \(P=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{-y}+\dfrac{1}{y}+\dfrac{1}{1}=1\).

 

 

Bình luận (0)
QP
Xem chi tiết
ND
Xem chi tiết
NT
17 tháng 7 2023 lúc 0:59

\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2xz=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)

\(\Rightarrow2\left(xy+yz+xz\right)=\left(x+y+z\right)^2+\left(x^2+y^2+z^2\right)\)

\(\Rightarrow2\left(xy+yz+xz\right)=a^2+b\)

\(\Rightarrow xy+yz+xz=\dfrac{a^2+b}{2}\)

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{c}\Rightarrow\dfrac{xy+yz+xz}{xyz}=\dfrac{1}{c}\)

\(\Rightarrow xyz=c\left(xy+yz+xz\right)\)

\(\Rightarrow xyz=\dfrac{\left(a^2+b\right)c}{2}\)

\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

\(\Rightarrow x^3+y^3+z^3=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)+3xyz\)

\(\Rightarrow x^3+y^3+z^3=\left(x+y+z\right)\left(x^2+y^2+z^2-\left(xy+yz+xz\right)\right)+3xyz\)

\(\Rightarrow x^3+y^3+z^3=a\left(b-\dfrac{a^2+b}{2}\right)+3\dfrac{\left(a^2+b\right)c}{2}\)

\(\Rightarrow x^3+y^3+z^3=a\dfrac{\left(b-a^2\right)}{2}+3\dfrac{\left(a^2+b\right)c}{2}\)

Bình luận (0)
TM
Xem chi tiết
NP
Xem chi tiết
NT
12 tháng 1 2023 lúc 22:01

a: (x+y+z)^3-x^3-y^3-z^3

=(x+y+z-x)(x^2+2xy+y^2-x^2-xy-xz+z^2)-(y+z)(y^2-yz+z^2)

=(x+y)(y+z)(x+z)

b: x^3+y^3+z^3=1

x+y+z=1

=>x+y=1-z

x^3+y^3+z^3=1

=>(x+y)^3+z^3-3xy(x+y)=1

=>(1-z)^3+z^3-3xy(1-z)=1

=>1-3z-3z^2-z^3+z^3-3xy(1-z)=1

=>1-3z+3z^2-3xy(1-z)=1

=>-3z+3z^2-3xy(1-z)=0

=>-3z(1-z)-3xy(1-z)=0

=>(z-1)(z+xy)=0

=>z=1 và xy=0

=>z=1 và x=0; y=0

A=1+0+0=1

Bình luận (0)
NN
Xem chi tiết
NT
30 tháng 1 2021 lúc 10:17

Sửa đề: \(P=x^{2008}+y^{2009}+z^{2010}\)

Ta có: x+y+z=1

nên \(\left(x+y+z\right)^3=1\)

\(\Leftrightarrow x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(x+z\right)=1\)

\(\Leftrightarrow3\left(x+y\right)\left(y+z\right)\left(z+x\right)+1=1\)

\(\Leftrightarrow3\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)

mà 3>0

nên \(\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\x+z=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\x=-z\end{matrix}\right.\)

Thay x=-y vào biểu thức \(x+y+z=1\), ta được:

\(-y+y+z=1\)

hay z=1

Thay x=-y và z=1 vào biểu thức \(x^2+y^2+z^2=1\), ta được:

\(\left(-y\right)^2+y^2+1=1\)

\(\Leftrightarrow y^2+y^2=0\)

\(\Leftrightarrow2y^2=0\)

hay y=0

Vì x=-y

và y=0

nên x=0

Thay x=0; y=0 và z=1 vào biểu thức \(P=x^{2008}+y^{2009}+z^{2010}\), ta được:

\(P=0^{2008}+0^{2009}+1^{2010}=1\)

Vậy: P=1

Bình luận (1)
TT
Xem chi tiết
TH
20 tháng 1 2021 lúc 22:28

Áp dụng bđt AM - GM:

\(x^3+1+1\ge3x;y^3+1+1\ge3y;z^3+1+1\ge3z;2x+2y+2z\ge6\sqrt[3]{xyz}=6\).

Cộng vế với vế các bđt trên rồi rút gọn ta có đpcm.

Bình luận (0)
HP
20 tháng 1 2021 lúc 22:30

Áp dụng BĐT Cosi:

\(\left(x^3+1+1\right)+\left(y^3+1+1\right)+\left(z^3+1+1\right)\)

\(\ge3\left(x+y+z\right)\)

\(\ge x+y+z+2.3\sqrt[3]{xyz}\)

\(=x+y+z+6\)

\(\Rightarrow x^3+y^3+z^3\ge x+y+z\)

Đẳng thức xảy ra khi \(x=y=z=1\)

Bình luận (0)
CA
Xem chi tiết
AH
12 tháng 10 2021 lúc 19:10

Bài 1:

a. \(=[(3x+(4y-5z)][3x-(4y-5z)]=(3x)^2-(4y-5z)^2\)

\(=9x^2-(16y^2-40yz+25z^2)=9x^2-16y^2+40yz-25z^2\)

b.

\(=(3a-1)^2+2(3a-1)(3a+1)+(3a+1)^2=[(3a-1)+(3a+1)]^2=(6a)^2=36a^2\)

Bình luận (0)
AH
12 tháng 10 2021 lúc 19:12

Bài 2:

\((x+y+z)^3=[(x+y)+z]^3=(x+y)^3+3(x+y)^2z+3(x+y)z^2+z^3\)

\(=[x^3+y^3+3xy(x+y)]+3(x+y)z(x+y+z)+z^3\)

\(=x^3+y^3+z^3+3xy(x+y)+3(x+y)z(x+y+z)\)

\(=x^3+y^3+z^3+3(x+y)(xy+zx+zy+z^2)\)

\(=x^3+y^3+z^3+3(x+y)(z+x)(z+y)\) (đpcm)

Bình luận (0)
HT
Xem chi tiết