Những câu hỏi liên quan
QL
Xem chi tiết
HM
9 tháng 9 2023 lúc 14:25

\(\begin{array}{l}a)\frac{1}{x} + \frac{2}{{x + 1}} + \frac{3}{{x + 2}} - \frac{1}{x} - \frac{2}{{x - 1}} - \frac{3}{{x + 2}}\\ = \left( {\frac{1}{x} - \frac{1}{x}} \right) + \left( {\frac{2}{{x + 1}} - \frac{2}{{x - 1}}} \right) + \left( {\frac{3}{{x + 2}} - \frac{3}{{x + 2}}} \right)\\ = 0 + \frac{2}{{x + 1}} - \frac{2}{{x - 1}} + 0\\ = \frac{{2\left( {x - 1} \right) - 2\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} = \frac{{2{\rm{x}} - 2 - 2{\rm{x}} - 2}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} = \frac{{ - 4}}{{\left( {x + 1} \right)\left( {x - 1} \right)}}\end{array}\)

\(\begin{array}{l}b)\frac{{2{\rm{x}} - 1}}{x} + \frac{{1 - x}}{{2{\rm{x}} + 1}} + \frac{3}{{{x^2} - 9}} + \frac{{1 - 2{\rm{x}}}}{x} + \frac{{x - 1}}{{2{\rm{x}} + 1}} - \frac{3}{{x + 3}}\\ = \left( {\frac{{2{\rm{x}} - 1}}{x} + \frac{{1 - 2{\rm{x}}}}{x}} \right) + \left( {\frac{{1 - x}}{{2{\rm{x}} + 1}} + \frac{{x - 1}}{{2{\rm{x}} + 1}}} \right) + \left( {\frac{3}{{{x^2} - 9}} - \frac{3}{{x + 3}}} \right)\\ = 0 + 0 + \frac{3}{{\left( {x + 3} \right)\left( {x - 3} \right)}} - \frac{3}{{x + 3}}\\ = \frac{{3 - 3\left( {x - 3} \right)}}{{\left( {x + 3} \right)\left( {x - 3} \right)}} = \frac{{12 - 3{\rm{x}}}}{{\left( {x + 3} \right)\left( {x - 3} \right)}}\end{array}\)

Bình luận (0)
TT
Xem chi tiết
H24
26 tháng 9 2019 lúc 14:17

????

Bình luận (0)
QL
Xem chi tiết
HM
9 tháng 9 2023 lúc 14:31

a)

\(\begin{array}{l}\frac{2}{{3{\rm{x}}}} + \frac{x}{{x - 1}} + \frac{{6{{\rm{x}}^2} - 4}}{{2{\rm{x}}\left( {1 - x} \right)}}\\ = \frac{2}{{3{\rm{x}}}} - \frac{x}{{1 - x}} + \frac{{6{{\rm{x}}^2} - 4}}{{2{\rm{x}}\left( {1 - x} \right)}}\\ = \frac{{4\left( {1 - x} \right) - 6{{\rm{x}}^2} + 3\left( {6{{\rm{x}}^2} - 4} \right)}}{{6{\rm{x}}\left( {1 - x} \right)}}\\ = \frac{{4 - 4{\rm{x}} - 6{{\rm{x}}^2} + 18{{\rm{x}}^2} - 12}}{{6{\rm{x}}\left( {1 - x} \right)}}\\ = \frac{{12{{\rm{x}}^2} - 4{\rm{x}} - 8}}{{6{\rm{x}}\left( {1 - x} \right)}}\end{array}\)

b)

\(\begin{array}{l}\frac{{{x^3} + 1}}{{1 - {x^3}}} + \frac{x}{{x - 1}} - \frac{{x + 1}}{{{x^2} + x + 1}}\\ = \frac{{ - {x^3} - 1}}{{{x^3} - 1}} + \frac{x}{{x - 1}} - \frac{{x + 1}}{{{x^2} + x + 1}}\\ = \frac{{ - {x^3} - 1 + x\left( {{x^2} + x + 1} \right) - \left( {{x^2} - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\\ = \frac{{ - {x^3} - 1 + {x^3} + {x^2} + x - {x^2} + 1}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\\ = \frac{x}{{{x^3} - 1}}\end{array}\)

c)

 \(\begin{array}{l}\left( {\frac{2}{{x + 2}} - \frac{2}{{1 - x}}} \right).\frac{{{x^2} - 4}}{{4{{\rm{x}}^2} - 1}}\\ = \frac{{2\left( {1 - x} \right) - 2\left( {x + 2} \right)}}{{\left( {x + 2} \right)\left( {1 - x} \right)}}.\frac{{{x^2} - 4}}{{4{{\rm{x}}^2} - 1}}\\ = \frac{{2 - 2{\rm{x}} - 2{\rm{x}} - 4}}{{\left( {x + 2} \right)\left( {1 - x} \right)}}.\frac{{{x^2} - 4}}{{4{{\rm{x}}^2} - 1}}\\ = \frac{{ - 4{\rm{x  -  2}}}}{{\left( {x + 2} \right)\left( {1 - x} \right)}}.\frac{{{x^2} - 4}}{{4{{\rm{x}}^2} - 1}}\\ = \frac{{\left( { - 4{\rm{x}} - 2} \right)\left( {x - 2} \right)\left( {x + 2} \right)}}{{\left( {x + 2} \right)\left( {1 - x} \right)\left( {2{\rm{x}} - 1} \right)\left( {2{\rm{x}} + 1} \right)}}\\ = \frac{{ - 4{{\rm{x}}^2} + 8{\rm{x}} - 2{\rm{x}} + 4}}{{\left( {1 - x} \right)\left( {2{\rm{x}} - 1} \right)\left( {2{\rm{x}} + 1} \right)}}\\ = \frac{{ - 4{{\rm{x}}^2} + 6{\rm{x}} + 4}}{{\left( {1 - x} \right)\left( {4{{\rm{x}}^2} - 1} \right)}}\end{array}\)

 

d)

\(\begin{array}{l}1 + \frac{{{x^3} - x}}{{{x^2} + 1}}\left( {\frac{1}{{1 - x}} - \frac{1}{{1 - {x^2}}}} \right)\\ = 1 + \frac{{{x^3} - x}}{{{x^2} + 1}}\left( {\frac{1}{{1 - x}} - \frac{1}{{1 - {x^2}}}} \right)\\ = 1 + \frac{{{x^3} - x}}{{{x^2} + 1}}.\frac{{1 + x - 1}}{{1 - {x^2}}}\\ = 1 + \frac{{x\left( {{x^2} - 1} \right)}}{{{x^2} + 1}}.\frac{x}{{1 - {x^2}}}\\ = 1 + \frac{{ - {x^2}\left( {{x^2} - 1} \right)}}{{\left( {{x^2} + 1} \right)\left( {{x^2} - 1} \right)}}\\ = 1 + \frac{{ - {x^2}}}{{{x^2} + 1}}\\ = \frac{{{x^2} + 1 - {x^2}}}{{{x^2} + 1}}\\ = \frac{1}{{{x^2} + 1}}\end{array}\)

Bình luận (0)
NA
Xem chi tiết
LT
7 tháng 5 2017 lúc 14:26

bài 1

\(ĐKXĐ:1+x\ne0\Rightarrow x\ne-1\)
\(\frac{3-7x}{1+x}=\frac{1}{2}\Rightarrow2\left(3-7x\right)=1+x\)
\(\Leftrightarrow6-14x=1+x\\ \Leftrightarrow-14x-x=1-6\\ \Leftrightarrow-15x=-5\\ \Leftrightarrow x=\frac{1}{3}\left(N\right)\)

Bình luận (0)
MT
Xem chi tiết
NT
25 tháng 3 2020 lúc 13:42

Bài 1:

ĐKXĐ: x≠1

Ta có: \(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)

\(\Leftrightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{4\left(x-1\right)}{\left(x^2+x-1\right)\left(x-1\right)}=0\)

\(\Leftrightarrow x^2+x+1+2x^2-5-4\left(x-1\right)=0\)

\(\Leftrightarrow x^2+x+1+2x^2-5-4x+4=0\)

\(\Leftrightarrow3x^2-3x=0\)

\(\Leftrightarrow3x\left(x-1\right)=0\)

Vì 3≠0

nên \(\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=0\)

Vậy: x=0

Bài 2:

ĐKXĐ: x≠2; x≠3; \(x\ne\frac{1}{2}\)

Ta có: \(\frac{x+4}{2x^2-5x+2}+\frac{x+1}{2x^2-7x+3}=\frac{2x+5}{2x^2-7x+3}\)

\(\Leftrightarrow\frac{x+4}{\left(x-2\right)\left(2x-1\right)}+\frac{x+1-\left(2x+5\right)}{\left(x-3\right)\left(2x-1\right)}=0\)

\(\Leftrightarrow\frac{x+4}{\left(x-2\right)\left(2x-1\right)}+\frac{x+1-2x-5}{\left(x-3\right)\left(2x-1\right)}=0\)

\(\Leftrightarrow\frac{\left(x+4\right)\left(x-3\right)}{\left(x-2\right)\left(2x-1\right)\left(x-3\right)}+\frac{\left(-x-4\right)\left(x-2\right)}{\left(x-3\right)\left(2x-1\right)\left(x-2\right)}=0\)
\(\Leftrightarrow x^2+x-12-x^2-2x+8=0\)

\(\Leftrightarrow-x-4=0\)

\(\Leftrightarrow-x=4\)

hay x=-4(tm)

Vậy: x=-4

Bài 3:

ĐKXĐ: x≠1; x≠-1

Ta có: \(\frac{x+1}{x-1}-\frac{x-1}{x+1}=3x\left(1-\frac{x-1}{x+1}\right)\)

\(\Leftrightarrow\frac{x+1}{x-1}-\frac{x-1}{x+1}=3x-\frac{3x\left(x-1\right)}{x+1}\)

\(\Leftrightarrow\frac{x+1}{x-1}-\frac{x-1}{x+1}-3x+\frac{3x\left(x-1\right)}{x+1}=0\)

\(\Leftrightarrow\frac{\left(x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{3x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{3x\left(x-1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=0\)

\(\Leftrightarrow\left(x^2+2x+1\right)-\left(x^2-2x+1\right)-3x\left(x^2-1\right)+3x\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow x^2+2x+1-x^2+2x-1-3x^3+3x+3x^3-6x^2+3x=0\)

\(\Leftrightarrow-6x^2+10x=0\)

\(\Leftrightarrow2x\left(-3x+5\right)=0\)

Vì 2≠0

nên \(\left[{}\begin{matrix}x=0\\-3x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\-3x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{5}{3}\end{matrix}\right.\)

Vậy: \(x\in\left\{0;\frac{5}{3}\right\}\)

Bài 4:

ĐKXĐ: x≠1; x≠-3

Ta có: \(\frac{2x}{x-1}+\frac{4}{x^2+2x-3}=\frac{2x-5}{x+3}\)

\(\Leftrightarrow\frac{2x\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}+\frac{4}{\left(x-1\right)\left(x+3\right)}-\frac{\left(2x-5\right)\left(x-1\right)}{\left(x+3\right)\left(x-1\right)}=0\)

\(\Leftrightarrow2x^2+6x+4-\left(2x^2-7x+5\right)=0\)

\(\Leftrightarrow2x^2+6x+4-2x^2+7x-5=0\)

\(\Leftrightarrow13x-1=0\)

\(\Leftrightarrow13x=1\)

hay \(x=\frac{1}{13}\)(tm)

Vậy: \(x=\frac{1}{13}\)

Bài 5:

ĐKXĐ: x≠1; x≠-2

Ta có: \(\frac{1}{x-1}-\frac{7}{x+2}=\frac{3}{x^2+x-2}\)

\(\Leftrightarrow\frac{x+2}{\left(x-1\right)\left(x+2\right)}-\frac{7\left(x-1\right)}{\left(x+2\right)\left(x-1\right)}-\frac{3}{\left(x+2\right)\left(x-1\right)}=0\)

\(\Leftrightarrow x+2-7\left(x-1\right)-3=0\)

\(\Leftrightarrow x+2-7x+7-3=0\)

\(\Leftrightarrow-6x+6=0\)

\(\Leftrightarrow-6\left(x-1\right)=0\)

Vì -6≠0

nên x-1=0

hay x=1(ktm)

Vậy: x∈∅

Bài 6:

ĐKXĐ: x≠4; x≠2

Ta có: \(\frac{x+3}{x-4}+\frac{x-1}{x-2}=\frac{2}{6x-8-x^2}\)

\(\Leftrightarrow\frac{x+3}{x-4}+\frac{x-1}{x-2}-\frac{2}{6x-8-x^2}=0\)

\(\Leftrightarrow\frac{x+3}{x-4}+\frac{x-1}{x-2}-\frac{2}{-\left(x^2-6x+8\right)}=0\)

\(\Leftrightarrow\frac{x+3}{x-4}+\frac{x-1}{x-2}+\frac{2}{\left(x-4\right)\left(x-2\right)}=0\)

\(\Leftrightarrow\frac{\left(x+3\right)\left(x-2\right)}{\left(x-4\right)\left(x-2\right)}+\frac{\left(x-1\right)\left(x-4\right)}{\left(x-2\right)\left(x-4\right)}+\frac{2}{\left(x-4\right)\left(x-2\right)}=0\)

\(\Leftrightarrow x^2+x-6+x^2-5x+4+2=0\)

\(\Leftrightarrow2x^2-4x=0\)

\(\Leftrightarrow2x\left(x-2\right)=0\)

Vì 2≠0

nên \(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=0\)

Vậy: x=0

Bài 7:

ĐKXĐ: x≠1; x≠-2; x≠-1

Ta có: \(\frac{1}{x-1}-\frac{7}{x+2}=\frac{3}{1-x^2}\)

\(\Leftrightarrow\frac{1}{x-1}-\frac{7}{x+2}+\frac{3}{x^2-1}=0\)

\(\Leftrightarrow\frac{\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}-\frac{7\left(x-1\right)\left(x+1\right)}{\left(x+2\right)\left(x-1\right)\left(x+1\right)}+\frac{3\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}=0\)

\(\Leftrightarrow x^2+3x+2-7\left(x^2-1\right)+3x+6=0\)

\(\Leftrightarrow x^2+3x+2-7x^2+7x+3x+6=0\)

\(\Leftrightarrow-6x^2+13x+8=0\)
\(\Leftrightarrow-6x^2+16x-3x+8=0\)

\(\Leftrightarrow2x\left(-3x+8\right)+\left(-3x+8\right)=0\)

\(\Leftrightarrow\left(-3x+8\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-3x+8=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-3x=-8\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{8}{3}\\x=\frac{-1}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{8}{3};\frac{-1}{2}\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
25 tháng 3 2020 lúc 13:45

\( 1)\dfrac{1}{{x - 1}} + \dfrac{{2{x^2} - 5}}{{{x^3} - 1}} = \dfrac{4}{{{x^2} + x + 1}}\\ DK:x \ne 1\\ \Leftrightarrow \dfrac{{{x^2} + x + 1 + 2{x^2} - 5}}{{{x^3} - 1}} = \dfrac{{4\left( {x - 1} \right)}}{{{x^3} - 1}}\\ \Leftrightarrow {x^2} + x + 1 + 2{x^2} - 5 = 4x - 4\\ \Leftrightarrow 3{x^2} - 3x = 0\\ \Leftrightarrow 3x\left( {x - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\left( {tm} \right)\\ x = 1\left( {ktm} \right) \end{array} \right.\\ 2)\dfrac{{x + 4}}{{2{x^2} - 5x + 2}} + \dfrac{{x + 1}}{{2{x^2} - 7x + 3}} = \dfrac{{2x + 5}}{{2{x^2} - 7x + 3}}\\ + DK:x \ne \dfrac{1}{2};x \ne 2;x \ne 3\\ \Leftrightarrow \dfrac{{x + 4}}{{\left( {2x - 1} \right)\left( {x - 2} \right)}} + \dfrac{{x + 1}}{{\left( {x - 3} \right)\left( {2x - 1} \right)}} = \dfrac{{2x + 5}}{{\left( {x - 3} \right)\left( {2x - 1} \right)}}\\ \Leftrightarrow \left( {x + 4} \right)\left( {x - 3} \right) + \left( {x + 1} \right)\left( {x - 2} \right) = \left( {2x + 5} \right)\left( {x - 2} \right)\\ \Leftrightarrow {x^2} + x - 12 + {x^2} - x - 2 = 2{x^2} + x - 10\\ \Leftrightarrow x = - 4\left( {tm} \right)\\ 3)\dfrac{{x + 1}}{{x - 1}} - \dfrac{{x - 1}}{{x + 1}} = 3x\left( {1 - \dfrac{{x - 1}}{{x + 1}}} \right)\\ DK:x \ne \pm 1\\ \Leftrightarrow {\left( {x + 1} \right)^2} - {\left( {x - 1} \right)^2} = 3x\left( {x - 1} \right)\left( {x + 1 - x + 1} \right)\\ \Leftrightarrow {x^2} + 2x + 1 - {x^2} + 2x - 1 = 6x\left( {x - 1} \right)\\ \Leftrightarrow 4x = 6{x^2} - 6x\\ \Leftrightarrow 2x\left( {3x - 5} \right) = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = \dfrac{5}{3} \end{array} \right.\left( {tm} \right) \)

Còn lại tương tự mà làm nhé!

Bình luận (0)
 Khách vãng lai đã xóa
NM
Xem chi tiết
TL
26 tháng 2 2020 lúc 9:17

\(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\left(x\ne1\right)\)

\(\Leftrightarrow\frac{1}{x-1}-\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{2x}{x^2+x+1}=0\)

\(\Leftrightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=0\)

\(\Leftrightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{2x^2-2x}{\left(x-1\right)\left(x^2+x+1\right)}=0\)

\(\Leftrightarrow\frac{1}{\left(x-1\right)\left(x^2+x+1\right)}\left(x^2+x+1-3x^2-2x^2+2x\right)=0\)

\(\Leftrightarrow-4x^2+3x+1=0\left(\frac{1}{\left(x-1\right)\left(x^2+x+1\right)}\ne0\right)\)

\(\Leftrightarrow-4x^2+4x-x+1=0\)

\(\Leftrightarrow-4x\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(-4x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\-4x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\-4x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\left(loại\right)\\x=\frac{-1}{4}\end{cases}}}\)

Vậy \(x=\frac{-1}{4}\)

Bình luận (0)
 Khách vãng lai đã xóa
VC
Xem chi tiết
TK
24 tháng 6 2019 lúc 17:20

a,ĐKXĐ \(x\ne-1;-\frac{1}{2}\)

Ta thấy x=0 không là nghiệm của PT

Xét \(x\ne0\)

Khi đó PT 

<=> \(\frac{2}{6x-1+\frac{3}{x}}+\frac{5}{4x+5+\frac{2}{x}}+\frac{1}{2x+3+\frac{1}{x}}=\frac{1}{3}\)

Đặt \(2x+\frac{1}{x}=a\)

=> \(\frac{2}{3a-1}+\frac{5}{2a+5}+\frac{1}{a+3}=\frac{1}{3}\)

<=>  \(3\left(25a^2+75a+10\right)=6a^3+31a^2+34a-15\)

<=> \(6a^3-44a^2-191a-45=0\)

Xin lỗi đến đây tớ ra nghiệm không đẹp 

Bình luận (0)
TK
24 tháng 6 2019 lúc 17:30

c, \(x^2+\frac{9x^2}{\left(x+3\right)^2}=7\)   ĐKXĐ \(x\ne-3\)

<=> \(\left(x-\frac{3x}{x+3}\right)^2+2.\frac{3x^2}{x+3}=7\)

<=> \(\left(\frac{x^2}{x+3}\right)^2+6.\frac{x^2}{x+3}-7=0\)

<=> \(\left(\frac{x^2}{x+3}+7\right)\left(\frac{x^2}{x+3}-1\right)=0\)

<=> \(\orbr{\begin{cases}x^2+7x+21=0\\x^2-x-3=0\end{cases}}\)

\(S=\left\{\frac{1\pm\sqrt{13}}{2}\right\}\)thỏa mãn ĐKXĐ

Bình luận (0)
TK
24 tháng 6 2019 lúc 17:45

b,\(\frac{1}{x+1}+\frac{2}{x+2}+\frac{1}{x+3}=\frac{1}{x+4}+\frac{2}{x+5}+\frac{1}{x+6}\)ĐKXĐ \(x\ne-1;-2;-3;-4;-5;-6\)

<=>\(\left(\frac{1}{x+1}-\frac{1}{x+6}\right)+2\left(\frac{1}{x+2}-\frac{1}{x+5}\right)+\left(\frac{1}{x+3}-\frac{1}{x+4}\right)=0\)

<=>\(\frac{5}{x^2+7x+6}+\frac{6}{x^2+7x+10}+\frac{1}{x^2+7x+12}=0\)

Đặt \(x^2+7x+6=a\)

=> \(\frac{5}{a}+\frac{6}{a+4}+\frac{1}{a+6}=0\)

<=> \(12a^2+90a+120=0\)

<=> \(a=\frac{-15\pm\sqrt{65}}{4}\)

Thay vào tính x nhưng bài này tớ ra nghiệm không đẹp

Bình luận (0)
H24
Xem chi tiết
LT
Xem chi tiết
PL
1 tháng 6 2019 lúc 13:04

\(1,\)\(\frac{x+2}{x+3}+\frac{x-1}{x+1}=\frac{2}{x^2+4x+3}+1\)

\(\Rightarrow\frac{\left(x+2\right)\left(x+1\right)}{\left(x+1\right)\left(x+3\right)}+\frac{\left(x-1\right)\left(x+3\right)}{\left(x+1\right)\left(x+3\right)}=\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{\left(x+1\right)\left(x+3\right)}{\left(x+1\right)\left(x+3\right)}\)

\(\Rightarrow\)\(x^2+3x+2+x^2-2x-3=2+x^2+4x+3\)

\(\Rightarrow x^2-3x-6=0\)

.....

Bình luận (0)
PL
1 tháng 6 2019 lúc 13:20

\(\frac{x+1}{x-2}+\frac{2x-1}{x-1}=\frac{2}{x^2-3x+2}+\frac{11}{2}\)

\(\Rightarrow\frac{2\left(x+1\right)\left(x-1\right)}{2\left(x-2\right)\left(x-1\right)}+\frac{2\left(2x-1\right)\left(x-2\right)}{2\left(x-1\right)\left(x-2\right)}\)\(=\frac{4}{2\left(x-1\right)\left(x-2\right)}+\frac{22\left(x-1\right)\left(x-2\right)}{2\left(x-1\right)\left(x-2\right)}\)

\(\Rightarrow2x^2-2+4x^2-10x+4=4+22x^2-66x+44\)

.....

Bình luận (0)
PL
1 tháng 6 2019 lúc 13:26

\(3,\)\(-2x^2+4x+3\)

\(=-2\left(x^2-2x-\frac{3}{2}\right)\)

\(=-2\left[\left(x^2-2x+1\right)-\frac{5}{2}\right]\)

\(=-2\left(x-1\right)^2+5\)

Đa thức này lớn nhất =5 khi và chỉ khi \(\left(x-1\right)^2\)nhỏ nhất 

\(\Rightarrow x-1=0\)

\(\Rightarrow x=1\)

Bình luận (0)
LA
Xem chi tiết