Chứng min đẳng thức
(a+b+c)^3 = a^3+b^3+c^3+3(a+b)(b+c)(c+a)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng min đẳng thức (a+b+c)^3 = a^3+b^3+c^3+3(a+b)(b+c)(c+a)
(a+b+c)3=[(a+b)+c]3
=(a+b)3+c3+3(a+b)c(a+b+c)
=a3+b3+c3+3(a+b)[ab+c(a+b+c)]
=a3+b3+c3+3(a+b)(ab+ac+bc+c2)
=a3+b3+c3+3(a+b)(a+c)(b+c)
chứng minh hằng đẳng thức :
(a+b+c)^3=a^3+b^3+c^3+3(a+b)(b+c)(c+a)
Ta có \(VT=\left(a+b+c\right)^3=\left[\left(a+b\right)+c\right]^3=\left(a+b\right)^3+3\left(a+b\right)^2.c+3\left(a+b\right)c^2+c^3\)
\(=a^3+3a^2b+3ab^2+b^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left[\left(a+b\right)c+c^2+ab\right]\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left[a\left(b+c\right)\right]+c\left(b+c\right)\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=VP\)
Vậy \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Chứng minh hằng đẳng thức :
( a + b + c )^3 = a^3 + b^3 + c^3 + 3( a + b )( b + c )( c + a )
(a+b+c)^3=((a+b)+c)^3=(a+b)^3+c^3+3(a+b)c(a+b+c)
=a^3+b^3+3ab(a+b)+c^3+3(a+b)c(a+b+c)
=a^3+b^3+c^3+3(a+b)(ab+c(a+b+c))
=a^3+b^3+c^3+3(a+b)(ab+ac+bc+c^2)
=a^3+b^3+c^3+3(a+b)(a+c)(b+c)
có tính chất (a+b)n=an+bn à.nếu có chứng minh?
chứng minh hàng đẳng thức:
a) (a+b+c)^3 - a^3 - b^3 - c^3 = 3(a+b) (b+c) (c+a)
b) (a+b+c) ^3 - a^3 - b^3 -c^3 = 3(a+b)(b+c)(c+a)
Giúp mình với, mình cần rất gấp
Chứng minh hằng đẳng thức;
\(a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)^3\)
Để chứng minh hằng đẳng thức a^3 + b^3 + c^3 + 3(a+b)(b+c)(c+a) = (a+b+c)^3, ta sẽ sử dụng công thức khai triển đa thức.
Theo công thức khai triển đa thức, ta có:
(a+b+c)^3 = a^3 + b^3 + c^3 + 3(a+b)(b+c)(c+a)
Vậy, hằng đẳng thức được chứng minh.
Chứng minh rằng hằng đẳng thức:
\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
(a+b+c)^3=((a+b)+c)^3=(a+b)^3+c^3+3(a+b)c(a+b+c)
=a^3+b^3+3ab(a+b)+c^3+3(a+b)c(a+b+c)
=a^3+b^3+c^3+3(a+b)(ab+c(a+b+c))
=a^3+b^3+c^3+3(a+b)(ab+ac+bc+c^2)
=a^3+b^3+c^3+3(a+b)(a+c)(b+c)
Chứng minh đẳng thức
( a + b + c )^3 = a^3 + b^3 + c^3 + 3(a + b )(b + c )( c + a)
Giải chi tiết giùm nha
chứng minh đẳng thức
a,cho x+y+z=0.chứng minh rằng:x^3+x^z+y^z-xyz+y^3=0
b, (a+b+c)^3 -a^3-b^3-c^3=3(a+b)(b+c)(c+a)
c, a^3+b^3+c^3=3abc với a+b+c=0
c, Ta có : a+b+c=0 ⇒ c=-(a+b)
⇒ a3+b3+c3= a3+b3-(a+b)3= x3+y3-(x3+3x2y+3xy2+y3)= x3+y3-x3-3x2y-3xy2-y3= -3x2y-3xy2= -3xy(x+y)= 3xyz(đpcm)
Câu a : Ta có :
\(x^3+x^2z+y^2z-xyz+y^3=0\)
\(\Leftrightarrow\left(x^3+y^3\right)+\left(x^2z-xyz+y^2z\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)+z\left(x^2-xy+y^2\right)=0\)
\(\Leftrightarrow\left(x^2-xy+y^2\right)\left(x+y+z\right)=0\)
\(\Leftrightarrow x+y+z=0\)
Câu b : Khai triển VT ta có :
\(VT=\left(a+b+c\right)^3-a^3-b^3-c^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)-a^3-b^3-c^3=3\left(a+b\right)\left(b+c\right)\left(c+a\right)=VP\)
Câu c : Ta có :
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-bc-ca+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
Luôn đúng vì \(a+b+c=0\)
chứng minh hằng đẳng thức
a)(a+b+c)^3 - a^3 -b^3 - c^3 = 3(a+b)(b+c)(c+a)
b) a^3 + b^3 + c^3 - 3abc = (a+b+c)(a^2+b^2+c^2 - ab - bc - ca)
Giúp mình với nhé