Chứng minh với mọi x,y thuộc Z ta có:
x+4y chia hết cho 13 <=> 10x+y chia hết 13
x ,y thuộc Z ,chứng minh 7x + 11y chia hết cho 13
thì x-4y cũng chia hết cho 13
\(7x+11y⋮13\)\(\Rightarrow2\left(7x+11y\right)⋮13\)\(\Rightarrow14x+22y⋮13\)(1)
mà \(13x⋮13\)và \(26y⋮13\)\(\Rightarrow13x+26y⋮13\)(2)
Từ (1) và (2) \(\Rightarrow\left(14x+22y\right)-\left(13x+26y\right)⋮13\)
\(\Rightarrow14x+22y-13x-26y⋮13\)\(\Rightarrow x-4y⋮13\left(đpcm\right)\)
cho x, y là các số tự nhiên thỏa mãn x+4y chia hết cho 13. chứng minh rằng 10x+y chia hết cho 13
Bạn tham khảo nhé !
Ta thấy : x+4y ⋮13
=> 10.(x + 4y ) ⋮13
=> 10x + 40y ⋮ 13
=> 10x + y + 39y ⋮ 13
mà 39y chia hết cho 13
=>10x+y ⋮ 13
x+4y13
=>10.(x+4y)13
10x+40y13
10x+y+39y13
mà 39y chia hết cho 13
=>10x+y13
Nếu (x + 4y) chia hết cho 13 thì (10x +y) chia hết cho 13
Chứng minh điều đấy.
Đặt A = x + 4y; B = 10x + y
Xét hiệu: 10A - B = 10.(x + 4y) - (10x + y)
= 10x + 40y - 10x - y
= 39y
Do A chia hết cho 13 nên 10A chia hết cho 13 mà 39y chia hết cho 13
=> B chia hết cho 13 hay 10x + y chia hết cho 13 (đpcm)
Chứng minh với ( Với x,y thuộc Z ) ta có
a, x+4y: hết 13 khi và chỉ khi 10x+y : hết 13
b, 2x+3y : hết 17 khi và chỉ khi 9x+5y : hết 17
c, 3x+2y : hết 17 khi và chỉ khi 10x+y : hết 17
Cho x,y là các số tự nhiên thỏa mãn x+4y chia hết cho 13.Chứng minh rằng 10x + y chia hết cho 13.
Mình đang cần gấp.
Ta có 4(10x+y)-(x+4y)=40x+4y-x-4y=39x chia hết cho 13
Do x+4y chia hết cho 13 => 4(10x+y) chia hết cho 13 => vì ƯCLN(4;13)=1
=> 10x+y chia hết cho 13
Ta thấy : x+4y ⋮13
=> 10.(x + 4y ) ⋮13
=> 10x + 40y ⋮ 13
=> 10x + y + 39y ⋮ 13
mà 39y chia hết cho 13
=>10x+y ⋮ 13
Cho A=18x+17y và B=x+2y
a,Chứng minh: A chia hết cho 19 khi và chỉ khi B chia hết cho 19 với mọi x,y thuộc Z
b,Cho a,b thuộc Z; chứng minh 3a-b chia hết cho 5 khi và chỉ khi a-2b chia hết cho 5
c,Cho x,y thuộc Z*.Cmr: 3x2-10y chia hết cho 13 khi và chỉ khi x2+y chia hết cho 13
(Giải cụ thể)
NHANH NHA MÌNH CẦN GẤP LẮM
a) A = 18x + 17y = 19x + 19y - (x + 2y) = 19(x + y) - (x + 2y) = 19(x + y) - B
Vậy A chia hết cho 19 khi và chỉ khi B chia hết cho 19.
b) Tương tự, M = 3a - b = 5a - 5b - 2a + 4b = 5(a - b) - 2(a - 2b)
2 không chia hết cho 5 nên M chia hết cho 5 khi và chỉ khi a - 2b chia hết cho 5.
c) Tương tự: P = 3x2 - 10y = 13x2 - 10x2 - 10y = 13x2 - 10(x2 + y)
10 không chia hết cho 13 nên P chia hết cho 13 khi và chỉ khi x2 + y chia hết cho 13.
b,Hướng dẫn: Xét A+b or A-B or mA+nB or mA-nB
a) A = 18x + 17y = 19x + 19y - (x + 2y) = 19(x + y) - (x + 2y) = 19(x + y) - B
Vậy A chia hết cho 19 khi và chỉ khi B chia hết cho 19.
b) Tương tự, M = 3a - b = 5a - 5b - 2a + 4b = 5(a - b) - 2(a - 2b)
2 không chia hết cho 5 nên M chia hết cho 5 khi và chỉ khi a - 2b chia hết cho 5.
c) Tương tự: P = 3x2 - 10y = 13x2 - 10x2 - 10y = 13x2 - 10(x2 + y)
10 không chia hết cho 13 nên P chia hết cho 13 khi và chỉ khi x2 + y chia hết cho 13.
Cho x - 5y chia hết cho 17 ( Với x,y thuộc Z )
Chứng minh rằng : 10x + y chia hết cho 17
Giúp mình với, PLEASE !!!
x-5y chia hết cho 17
=>10x-50y chia hết cho 17
=>10x+y-51y chia hết cho 17
mà 51y chia hết cho 17
nên 10x+y chia hết cho 17
Chứng minh với x,y thuộc Z ta có :
3x + 2y chia hết cho 17 <=> 10x+y chia hết cho 17
Ta có :
3x + y chia hết cho 17
Suy ra ( 3x + 2y)9 = 27x + 18y cũng chia hết cho 17 (1)
Mà: (27x + 18y) - (10x + y) = 17x - 17y chia hết cho 17 (2)
Từ (1) và (2) suy ra điều phải chứng minh.
cho x,y là các số tự nhiên thỏa mãn x+4y chia hết cho 13.Chứng minh rằng 10a+y chia hết cho 13
x+4y\(⋮\)13
=>10.(x+4y)\(⋮\)13
10x+40y\(⋮\)13
10x+y+39y\(⋮\)13
mà 39y chia hết cho 13
=>10x+y\(⋮\)13
chắc bn viết nhầm x thành a