Những câu hỏi liên quan
LN
Xem chi tiết
NL
27 tháng 9 2019 lúc 17:38

Bạn vào đây xem thử:

Câu hỏi của Phác Chí Mẫn - Toán lớp 9 | Học trực tuyến

Bình luận (0)
BB
Xem chi tiết
NL
23 tháng 4 2019 lúc 21:47

Áp dụng BĐT \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)

\(\Rightarrow P\ge\frac{1}{2}\left(2x+\frac{1}{x}+2y+\frac{1}{y}\right)^2=\frac{1}{2}\left[2\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\right]^2\)

\(\Rightarrow P\ge\frac{1}{2}\left[2\left(x+y\right)+\frac{4}{x+y}\right]^2=18\)

\(\Rightarrow P_{min}=18\) khi \(x=y=\frac{1}{2}\)

Bình luận (0)
PK
Xem chi tiết
UI
3 tháng 11 2019 lúc 20:59

neu de bai bai 1 la tinh x+y thi mik lam cho

Bình luận (0)
 Khách vãng lai đã xóa
TD
4 tháng 11 2019 lúc 17:06

đăng từng này thì ai làm cho 

Bình luận (0)
 Khách vãng lai đã xóa
KN
13 tháng 2 2020 lúc 14:56

We have \(P=\frac{x^4+2x^2+2}{x^2+1}\)

\(\Rightarrow P=\frac{x^4+2x^2+1+1}{x^2+1}\)

\(=\frac{\left(x^2+1\right)^2+1}{x^2+1}\)

\(=\left(x^2+1\right)+\frac{1}{x^2+1}\)

\(\ge2\sqrt{\frac{x^2+1}{x^2+1}}=2\)

(Dấu "="\(\Leftrightarrow x=0\))

Vậy \(P_{min}=2\Leftrightarrow x=0\)

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
KK
22 tháng 2 2019 lúc 20:26

Ta có: \(\frac{1}{x}-\frac{y}{8}=\frac{1}{16}\)

=> \(\frac{1}{x}=\frac{1}{16}+\frac{y}{8}\)

=> \(\frac{1}{x}=\frac{1+2y}{16}\)

=> 1.16 = x(1 + 2y)

=> x(1 + 2y) = 16 = 1 . 16 = 2 . 8 = 4.4

Vì 1 + 2y là số lẽ nên 1 + 2y \(\in\){1; -1} => x \(\in\){16; -16}

Lập bảng :

1 + 2y 1 -1
  x16-16
  y 0 -1

Vậy ...

Bình luận (0)
H24
22 tháng 2 2019 lúc 20:27

 :

 

1x =116 

   

=>                        => 

        X = 1.16:1 =16

                                      Y=1.8:16= 0.5

y8 =116 

Vậy X = 16 ; Y=0.5       

                

 

                       

 

 :                            

Bình luận (0)
TT
22 tháng 2 2019 lúc 20:31

Giải

Ta có 1/x - y/8 = 1/16 

=> 1/x                = 1/16 + y/8 

=> 1/x                = 1/16 + 2y/16

=> 1/x                = 2y+1/16

=> 1.16              = (2y+1).x

=> 16                  = (2y+1).x

Ta thấy Ư(16)={1;2;4;8;16}

Mà 2y +1 là số lẻ nên suy ra 2y+1=1 và x=16

=> y=0 và x=16 

Vậy x=16 và y=0 thoả mãn

Bình luận (0)
H24
Xem chi tiết
LV
28 tháng 10 2014 lúc 18:40

xin lỗi em mới lớp 8 ko trả lời dc

Bình luận (0)
LC
Xem chi tiết
HV
23 tháng 4 2019 lúc 22:23

Ta có (x-45)^2 >=0 

          -|2y+5|<=0 

mà (x-45)^2=-|2y+5

=> x-45= 2y+5=0

=> x=45 ; y=-5/2

Thay vào là ra

Bình luận (0)

ta có \(\left(x-45\right)^2\ge0\)\(-\left|2y+5\right|\le0\)nên để dấu = xảy ra khi và chỉ khi 2 vế bằng 0

=> \(\left(x-45\right)^2=-\left|2y+5\right|=0\)

\(\Rightarrow\hept{\begin{cases}x=45\\y=\frac{-5}{2}\end{cases}}\)

Thay vào rồi tính nha men

Bình luận (0)
DA
23 tháng 4 2019 lúc 22:31

khó ghê ta ahihi

Bình luận (0)
LC
Xem chi tiết
H24
Xem chi tiết
BD
12 tháng 11 2016 lúc 8:28

x = 5

Thử lại :

5 - 4 / 2015 - 1/2015 = 0/2015

Bình luận (0)
CV
12 tháng 11 2016 lúc 10:10

x-4/2015 - 1/2015=10-2x/2015 

ĐÁP SỐ : x=5

Bình luận (0)
Xem chi tiết
NL
4 tháng 6 2019 lúc 7:08

Đặt \(\left\{{}\begin{matrix}x=a^2\\y=b^2\end{matrix}\right.\) \(\Rightarrow12\ge\left(a^2+b^2\right)^3+4a^2b^2\ge8a^3b^3+4a^2b^2\)

\(\Rightarrow2a^3b^3+a^2b^2-3\le0\Rightarrow ab\le1\)

\(P=\frac{1}{1+a^2}+\frac{1}{1+b^2}+2018a^2b^2\le\frac{2}{1+ab}+2018a^2b^2\)

Ta sẽ chứng minh \(P\le2019\)

Thật vậy, đặt \(ab=t\Rightarrow0< t\le1\)

\(\frac{2}{1+t}+2018t^2\le2019\Leftrightarrow2+2018t^2\left(1+t\right)\le2019\left(1+t\right)\)

\(\Leftrightarrow2018t^3+2018t^2-2019t-2017\le0\)

\(\Leftrightarrow\left(t-1\right)\left(2018t^2+4036t+2017\right)\le0\) (luôn đúng)

(Do \(2018t^2+4036t+2017>0\) \(\forall t>0\)\(t-1\le0\) \(\forall t\le1\))

\(\Rightarrow P_{max}=2019\) khi \(x=y=1\)

Bình luận (1)