Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
KT
Xem chi tiết
DB
Xem chi tiết
PD
Xem chi tiết
NH
Xem chi tiết
HC
Xem chi tiết
PL
Xem chi tiết
NK
Xem chi tiết
HH
Xem chi tiết
HT
Xem chi tiết
H24
26 tháng 7 2019 lúc 16:31

Ta chứng minh trong 2003 số nguyên dương đã cho chỉ nhận nhiều nhất 4 giá tri khác nhau.

Thật vậy giả sử trong các số đã cho có nhiều hơn 4 chữ số khác nhau, giả sử \(a_1,a_2,a_3,a_4,a_5\)là 5 số khác nhau bất kì. Không mất tính tổng quát giả sử

\(a_1< a_2< a_3< a_4< a_5\)(1)

Theo đầu bài \(a_1a_2=a_3a_4\)(2)

Theo (1) không xảy ra \(a_1a_2=a_3a_4\)hoặc\(a_1a_3=a_2a_4.\)

Tương tự 4 số khác nhau \(a_1,a_2,a_3,a_5\)thì \(a_1a_5=a_2a_3\)(3).

Từ (2) và (3) suy ra \(a_4=a_5.\)Mâu thuẫn.

Vậy trong 2003 số nguyên dương đã cho không thể có hơn 4 số khác nhau. Mà 2003 = 4.500 + 3.

Do đó trong 2003 số tự nhiên dương đã cho luôn tìm được ít nhất 500 + 1 = 501 số bằng nhau.

Bình luận (0)