CMR: trong \(2^{n+1}-1\) số nguyên bất kì đều tồn tại 2n số có tổng là một số chẵn
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
CMR trong 2^n+1 - 1 số nguyên bất kỳ đều tồn tại 2n số có tổng là 1 số chẵn
Chứng minh rằng trong \(2^{n+1}\)số nguyên bất kì đều tồn tại 2n số có tổng là một số chẵn
chứng minh rằng trong \(2^{n+1}-1\) số nguyên bất kì đểu tồn tại 2n số có tổng là 1 số chẵn
1cho x,y thõa mãn \(x^2+y^2-2x-4y\le0\) CM \(x+2y\le10\)
2CM \(2^{n+1}-1\) số nguyên bất kì đều tồn tại 2n số có tổng là số chặn
Bài 1: CMR từ 102 số tự nhiên bất kì luôn có thể tồn tại 2 số có tổng hoặc hiệu chia hết cho 200.
Bài 2: CMR từ 10 số tự nhiên bất kì (a1, a2, a3, ... , a10) thì luôn tồn tại 4 số có tổng chia hết cho 4.
Bài 3: CMR từ 13 số tự nhiên bất kì luôn tồn tại 4 số có tổng chia hết cho 4.
Có tồn tại hay không 30 số nguyên viết liền nhau thành 1 hàng ngang mà tổng 5 số nguyên liên tiếp bất kì là một số nguyên âm và tổng 7 số nguyên liên tiếp bất kì là một số nguyên dương
mọi người giải chi tiết cho em một chút nhé
từ tập M chọn một cách bất kì 2^n+1 số. cmr tồn tại 2 số trong tập hợp vừa chọn mà tích của chúng là số chính phương
1.Chứng minh rằng trong 6 số tự nhiên bất kì luôn tồn tại 1 số chia hết cho 6 và vài số có tổng chia hết cho 6
2.Cho 21 số nguyên dương bất kì khác nhau không vượt quá 40 .Chứng minh ràng trong 21 số đó luôn tồn tại 2 số có tổng=41
Cho 2003 số nguyên dương sao cho 4 số bất kì trong chúng đều lập thành một tỉ lệ thức. CMR: trong các số đã cho luôn tồn tại ít nhất 501 số = nhau
Ta chứng minh trong 2003 số nguyên dương đã cho chỉ nhận nhiều nhất 4 giá tri khác nhau.
Thật vậy giả sử trong các số đã cho có nhiều hơn 4 chữ số khác nhau, giả sử \(a_1,a_2,a_3,a_4,a_5\)là 5 số khác nhau bất kì. Không mất tính tổng quát giả sử
\(a_1< a_2< a_3< a_4< a_5\)(1)
Theo đầu bài \(a_1a_2=a_3a_4\)(2)
Theo (1) không xảy ra \(a_1a_2=a_3a_4\)hoặc\(a_1a_3=a_2a_4.\)
Tương tự 4 số khác nhau \(a_1,a_2,a_3,a_5\)thì \(a_1a_5=a_2a_3\)(3).
Từ (2) và (3) suy ra \(a_4=a_5.\)Mâu thuẫn.
Vậy trong 2003 số nguyên dương đã cho không thể có hơn 4 số khác nhau. Mà 2003 = 4.500 + 3.
Do đó trong 2003 số tự nhiên dương đã cho luôn tìm được ít nhất 500 + 1 = 501 số bằng nhau.