Bài 3: Tính
A = ( 1 + 2 ) . 1/2 + ( 1 + 2 + 3 ) . 1/3 + ... + ( 1 + 2 + 3 +...+ 2016) . 1/2016
Bài 1: Cho a,b,c thỏa mãn (a+b-c)/c=(b+c-a)/a=(c+a-b)/b
tính P=(1+b/a)*(1+c/b)*(1+a/c)
Bài 2: Cho a+b+c=0
tính B=((a^2+b^2-c^2)*(b^2+c^2-a^2)*(c^2+a^2-b^2))/(10*a^2*b^2*c^2)
Bài 3: cho a^3*b^3+b^3*c^3+c^3*a^3=3*a^3*b^3*c^3
tính M(1+a/b)*(1+b/c)*(1+c/a)
Bài 4: cho 3 số a,b,c TM a*b*c=2016
tính P=2016*a/(a*b+2016*a+2016) + b/(b*c+b+2016) + c/(a*c+c+1)
Bài 5: cho a+b+c=0
tính Q=1/(a^2+b^2-c^2) + 1/(b^2+c^2-a^2) + 1/(a^2+c^2-b^2)
TÍNH GIÁ TRỊ BIỂU THỨC A=2016+(2016/1+2)+(2016/1+2+3)+....+(2016/1+2+3+4+...+2016)
bài 2: Tính nhanh
a) A = 201^2
b) B= 498^2
c) C= 93. 107
d) D= 2016^2 - 2015. 2017
e) E= 2016^3 - 1
________
2016^2 + 2017
g) G= 2016^2 - 2015^2 + 2014^2 - 2013^2 + 2012^2 - 2011^2 + 2010^2 - 1^2
\(201^2=\left(200+1\right)^2=200^2+2.200.1+1^2=40000+400+1=40401\)
\(498^2=\left(500-2\right)^2=500^2-2.500.2+2^2=250000-2000+4=248004\)
\(93.107=\left(100-7\right)\left(100+7\right)=100^2-7^2=10000-49=9951\)
\(2016^2-2015.2017=2016^2-\left(2016-1\right)\left(2016+1\right)=2016^2-2016^2+1^2=1\)
Cho A = 1/2 + 1/3 + 1/4 + ... + 1/2017 B = 1/2016 + 2/2015 +3/2014+ ...+ 2015/2 + 2016/1 Tính B : A
Ta có: \(\dfrac{B}{A}=\dfrac{\dfrac{1}{2016}+\dfrac{2}{2015}+\dfrac{3}{2014}+...+\dfrac{2015}{2}+\dfrac{2016}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)
\(=\dfrac{1+\left(1+\dfrac{2015}{2}\right)+\left(1+\dfrac{2014}{3}\right)+...+\left(1+\dfrac{2}{2015}\right)+\left(1+\dfrac{1}{2016}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)
\(=\dfrac{\dfrac{2017}{2017}+\dfrac{2017}{2}+\dfrac{2017}{3}+...+\dfrac{2017}{2015}+\dfrac{2017}{2016}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)
\(=\dfrac{2017\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}}\)
\(=2017\)
Câu 1
a) Chứng tỏ rằng 1/3 - 1/3^2 + 1/3^3 - 1/3^4 + 1/3^5 - 1/3^6 < 1/4
b) Cho A= 2015^2016 + 2016^2015 x 2015 và B= 1 + 2^2 + 3^2 + ......+2016^2. Tính AB có chia hết cho 5 không? Vì sao?
Bài 1 : Rút gọn
\(M=\dfrac{1^{2016}+2^{2016}+3^{2016}+...+10^{2016}}{2^{2016}+4^{2016}+6^{2016}+...+20^{2016}}\)
Bài 2 : Tính
\(N=\left(\dfrac{1}{4.9}+\dfrac{1}{9.14}+\dfrac{1}{14.19}+...+\dfrac{1}{44.49}\right).\dfrac{1-3-5-7-...-9}{89}\)
\(P=\dfrac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6-8^4.3^5}-\dfrac{5^{10}.7^3-25^5.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
Bài 3: Rút gọn
a) A = |2x + 4,6| - 2x + 15,4
b) B = |x + 7,2| - |x - 1,2|
c) C = 8,5x - 19, 5 - |1,5x + 4,5|
d) D = 8,5 + x - |8,5 - x|
Bài 4 : Tìm x và y \(\in\) N.Biết 25 - y2 = 8(x - 2009)2
Bài 5 ; Cho :
\(A=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\left(\dfrac{1}{4^2}-1\right)...\left(\dfrac{1}{100^2}-1\right)\)
So sánh phân số sau vs \(\dfrac{-1}{2}\)
A = 1/2 + 1/3 +1/4 +.....+1/2016 + 1/2017 B = 2016/1 + 2015/2 + ......+ 2/2015 + 1/2016 . Tính B/A
\(\frac{B}{A}=\frac{\frac{2016}{1}+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{2016}+\frac{1}{2017}}\)
\(\frac{B}{A}=\frac{\left(\frac{2016}{1}+1\right)+\left(\frac{2015}{2}+1\right)+...+\left(\frac{1}{2016}+1\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}}\)
\(\frac{B}{A}=\frac{\frac{2017}{1}+\frac{2017}{2}+...+\frac{2017}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}}\)
\(\frac{B}{A}=\frac{2017\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}}=2017\div\frac{1}{2017}=4068289\)
giải bài toán a=(1-1/2016)x(1-2/2016)x(1-3/2016)x...x(1-2017/2016)
Bài 1 :
a, - { -(2016 +2015) - [ - (2016 - 2015) - (2016+2015) ] }
b, 2016 - { ( 2016 + 3) - [ (2016 + 3) - (- 2016 - 2) ] }
c, [ 2016 + (2016 + 3) ] - [ (2016 + 2) - (2016 - 2) ]
a, - { -(2016 +2015) - [ - (2016 - 2015) - (2016+2015) ] }
= -{-(2016+2015)-[-0-0]}
= -{-4031-0-0}
=-4031