Tìm a,b,c biết:
a:b:c=2:5:3 và 2a+b-4c=-21
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm a,b,c biết:
a:b:c=2:5:3 và 2a+b-4c=-21
\(a:b:c=2:5:3\)
\(\Rightarrow\frac{a}{2}=\frac{b}{5}=\frac{c}{3}\)
\(\Rightarrow\frac{a}{2}=\frac{2a}{4}=\frac{b}{5}=\frac{4c}{12}=\frac{c}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau; ta có :
\(\frac{a}{2}=\frac{2a}{4}=\frac{b}{5}=\frac{4c}{12}=\frac{c}{3}=\frac{2a+b-4c}{4+5-12}=-\frac{21}{-3}=7\)
\(\frac{a}{2}=7\Rightarrow a=14\)
\(\frac{b}{5}=7\Rightarrow b=35\)
\(\frac{c}{3}=7\Rightarrow c=21\)
cho 2a+b=5 và 2c+b=-5 tìm A=(2+2a/b)(3+3b/c)(4+4c/a)
giúp được mình ,mình giúp bạn!
ok
cho a,b,c thoả mãn: a^2+b^2+4c^2+3=2a+2b+4c. Tính M = (a+b+2c)^3 - 21
Tìm \(a:b:c=2:5:3\) và \(2a+b-4c=-21\)
\(a\div b\div c=2\div5\div3\Rightarrow\frac{a}{2}=\frac{b}{5}=\frac{c}{3}\Rightarrow\frac{2a}{4}=\frac{b}{5}=\frac{4c}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{2a}{4}=\frac{b}{5}=\frac{4c}{12}=\frac{2a+b-4c}{4+5-12}=\frac{-21}{-3}=7\)
\(\frac{2a}{4}=7\Rightarrow a\frac{7\times4}{2}=14\)
\(\frac{b}{5}=7\Rightarrow b=7\times5=35\)
\(\frac{4c}{12}=7\Rightarrow\frac{12\times7}{4}=21\)
Vậy \(a=14;b=35;c=21\)
Chúc bạn học tốt ^^
Ta có : \(a:b:c=2:5:3\)
Từ đó : \(\Rightarrow\frac{a}{2}=\frac{b}{5}=\frac{c}{3}\)
\(\Rightarrow\frac{a}{2}=\frac{2a}{4}=\frac{b}{5}=\frac{4c}{12}=\frac{c}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{a}{2}=\frac{2a}{4}=\frac{b}{5}=\frac{4c}{12}=\frac{c}{3}=\frac{2a+b-4c}{4+5-12}=\frac{-21}{-3}=7\)
\(\Leftrightarrow\frac{a}{2}=7\Rightarrow a=14\)
\(\Leftrightarrow\frac{b}{5}=7\Rightarrow b=35\)
\(\Leftrightarrow\frac{c}{3}=7\Rightarrow c=21\)
Vậy 3 số cần tìm là 14;35;21
\(a:b:c=2:5:3\)
hay \(\frac{a}{2}=\frac{b}{5}=\frac{c}{3}\) và 2a+b-4c=-21
áp dụng t/c dãy tỉ số bẳng nhau ta có:
\(\frac{a}{2}=\frac{b}{5}=\frac{c}{3}\) =\(\frac{2a+b-4c}{4+5-12}=\frac{-21}{-3}=7\)
=> \(\frac{a}{2}=7\Rightarrow a=7.2\Rightarrow a=14\)
=>\(\frac{b}{5}=7\Rightarrow b=7.5\Rightarrow b=35\)
=>\(\frac{c}{3}=7\Rightarrow c=7.3\Rightarrow c=21\)
vậy a=14
b=35
c=21
Biết 2a-3b/5 = 4c-2a/10 = 3b-4c/15 và a+b+c. Tìm a,b,c?
Tìm a, b, c, biết
a) \(\dfrac{a-1}{2}=\dfrac{b-2}{3}=\dfrac{c-3}{4}\) và \(a-2b+3c=14\)
b) \(\dfrac{2a}{3}=\dfrac{3b}{4}=\dfrac{4c}{5}\) và \(a+b+c=49\)
b) Ta có : \(\dfrac{2a}{3}=\dfrac{3b}{4}=\dfrac{4c}{5}\)
\(\Leftrightarrow\dfrac{a}{\dfrac{3}{2}}=\dfrac{b}{\dfrac{4}{3}}=\dfrac{c}{\dfrac{5}{4}}=\dfrac{a+b+c}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Khi đó \(a=12.\dfrac{3}{2}=18;b=12.\dfrac{4}{3}=16;c=12.\dfrac{5}{4}=15\)
Vậy (a,b,c) = (18,16,15)
Tìm a , b , c biết :
a/10 = b/5 ; b/2 = c/3 và 2a - 3b + 4c = 330
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{20}=\dfrac{b}{10}=\dfrac{c}{15}=\dfrac{2a-3b+4c}{2\cdot20-3\cdot10+4\cdot15}=\dfrac{330}{70}=\dfrac{33}{7}\)
Do đó: a=660/7; b=300/7; c=495/7
1) tìm x17-(x-5)+2x-1=7-(10-13)
2)A) tìm a,b,c,d khác 0 biết 2a/3b = 3b/4c = 4c/5d = 5d/2a
B) tính C=2a/3b+3b/4c+4c/5d+5d/2a
Bài 4: tìm 3 số a,b,c biết : a/5=b/7=c/10 và 2a+3b-4c=-81
Bài 5 : tìm y
a,y/4=9/y
b, y+7/20=5/y+7
c, 4-5y/3=y+2/5
Nhanhhh tickkkkkk
Bài 5 :
a) \(\dfrac{y}{4}=\dfrac{9}{y}\)
\(\Rightarrow y^2=36\left(y\ne0\right)\)
\(\Rightarrow y=\pm6\)
b) \(\dfrac{y+7}{20}=\dfrac{5}{y+7}\left(y\ne-7\right)\)
\(\Rightarrow\left(y+7\right)^2=100=10^2\)
\(\Rightarrow\left[{}\begin{matrix}y+7=10\\y+7=-10\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=3\\y=-17\end{matrix}\right.\)
c) \(\dfrac{4-5y}{3}=\dfrac{y+2}{5}\)
\(\Rightarrow5\left(4-5y\right)=3\left(y+2\right)\)
\(\Rightarrow20-25y=3y+6\)
\(\Rightarrow28y=14\)
\(\Rightarrow y=\dfrac{14}{28}=\dfrac{1}{2}\)
Bài 4 :
\(\dfrac{a}{5}=\dfrac{b}{7}=\dfrac{c}{10}\)
\(\Rightarrow\dfrac{2a}{10}=\dfrac{3b}{21}=\dfrac{4c}{40}=\dfrac{2a+3b-4c}{10+21-40}=\dfrac{81}{-9}=-9\)
\(\Rightarrow\left\{{}\begin{matrix}a=-9.5=-45\\b=-9.7=-63\\c=-9.10=-90\end{matrix}\right.\)
Đính chính Bài 4 :
\(...\dfrac{2a+3b-4c}{10+21-40}=\dfrac{-81}{-9}=9\)
\(\Rightarrow\left\{{}\begin{matrix}a=9.4=36\\b=9.7=63\\c=9.10=90\end{matrix}\right.\)