Những câu hỏi liên quan
PA
Xem chi tiết
HN
3 tháng 9 2016 lúc 22:06

a/ Ta có : \(3y^2+12y+\left(4x^2+3x+5\right)=0\)

Xét \(\Delta'=6^2-3\left(4x^2+3x+5\right)=-12x^2-9x+21\)

Để pt trên có nghiệm thì \(\Delta'\ge0\Leftrightarrow-12x^2-9x+21\ge0\Leftrightarrow-\frac{7}{4}\le x\le1\)

Vì x là nghiệm nguyên nên \(0\le x\le1\)

Do đó x = 0 hoặc x = 1

Nếu x = 0 thì  \(y_1=\frac{-6-\sqrt{21}}{3}\) (loại) , \(y_2=\frac{-6+\sqrt{21}}{3}\) (loại)

Nếu x = 1 thì y = -2 (nhận)

Vậy (x;y) = (1;-2)

Bình luận (4)
PA
3 tháng 9 2016 lúc 22:16

t vẫn chưa học delta

Bình luận (0)
LJ
Xem chi tiết
LN
7 tháng 5 2022 lúc 10:29

(1+x2)(1+y2)+4xy+2(x+y)(1+xy)=25(1+x2)(1+y2)+4xy+2(x+y)(1+xy)=25

x2+2xy+y2+x2y2+2xy.1+1+2(x+y)(1+xy)−25=0x2+2xy+y2+x2y2+2xy.1+1+2(x+y)(1+xy)−25=0

(x+y)2+2(x+y)(1+xy)+(1+xy)2−25=0(x+y)2+2(x+y)(1+xy)+(1+xy)2−25=0

(x+y+1+xy+5)(x+y+1+xy−5)=0(x+y+1+xy+5)(x+y+1+xy−5)=0[x+y+xy=−6x+y+xy=4[x+y+xy=−6x+y+xy=4

Nếu x+y+xy=-6→(x+1)(y+1)=-5(vì x,yϵ z nên x+1,y+1ϵ z)

ta có bảng:

x+1                   1                5                -1                  -5

y+1                 -5                -1                5                     1

x                       0                 4                 -2                    -6

y                     -6                  -2                 4                  0

→(x,y)ϵ{(0;−6),(4;−2)...}

 
Bình luận (0)
DL
7 tháng 5 2022 lúc 11:28

\(\left(1+x^2\right)\left(1+y^2+4xy\right)+2\left(x+y\right)\left(1+xy\right)=25\)

\(\Leftrightarrow\) \(x^2+2xy+y^2+x^2y^2+2xy.1+1+2\left(x+y\right)\left(1+xy\right)-25=0\)

\(\Leftrightarrow\) \(\left(x+y\right)^2+2\left(x+y\right)\left(1+xy\right)+\left(1+xy\right)^2-25=0\)

\(\Leftrightarrow\) \(\left(x+y+1+xy+5\right)\left(x+y+1+xy-5\right)=0\) \(\Rightarrow\) \(\left\{{}\begin{matrix}x+y+xy=-6\\x+y+xy=4\end{matrix}\right.\)

nếu \(x+y+xy=-6\Rightarrow\left(x+1\right)\left(y+1\right)=-5\) 

                                                                ( vì \(x,y\in Z\) nên \(x+1;y+1\in Z\) )

ta lập bảng :

       \(x+1\)           \(1\)         \(5\)         \(-1\)         \(-5\)
       \(y+1\)         \(-5\)          \(-1\)          \(5\)          \(1\) 
          \(x\)            \(0\)            \(4\)         \(-2\)          \(-6\) 
           \(y\)         \(-6\)          \(-2\)           \(4\)           \(0\)

\(\Rightarrow\) \(x;y\in\left\{\left(0,6\right);\left(4,-2\right);\left(-2,4\right);\left(-6,0\right)\right\}\)

Bình luận (0)
LP
Xem chi tiết
TL
Xem chi tiết
SP
Xem chi tiết
PA
20 tháng 3 2020 lúc 21:42

Đúng là chơi lừa bịp thực sự bài này rất dễ đây là cách giải:

ta có: \(\left(x+y\right)^2+\left(y+z\right)^4+.....+\left(x+z\right)^{100}\ge0\)còn \(-\left(y+z+x\right)\le0\)  nên phương trình 1 vô lý 

tương tự chứng minh phương trinh 2 và 3 vô lý 

vậy \(\hept{\begin{cases}x=\varnothing\\y=\varnothing\\z=\varnothing\end{cases}}\)

thực sự bài này mới nhìn vào thì đánh lừa người làm vì các phương trình rất phức tạp nhưng nếu nhìn kĩ lại thì nó rất dễ vì các trường hợp đều vô nghiệm

Bình luận (0)
 Khách vãng lai đã xóa
H24
20 tháng 4 2020 lúc 19:15

\(\left(x+y\right)^2+\left(y+z\right)^4+...+\left(x+z\right)^{100}=-\left(y+z+x\right)\)

Đặt : \(A=\left(x+y\right)^2+\left(y+z\right)^4+...+\left(x+z\right)^{100}\)

Ta dễ dàng nhận thấy tất cả số mũ đều chẵn 

\(=>A\ge0\)(1)

Đặt : \(B=-\left(y+z+x\right)\)

\(=>B\le0\)(2)

Từ 1 và 2 \(=>A\ge0\le B\)

Dấu "=" xảy ra khi và chỉ khi \(A=B=0\)

Do \(B=0< =>y+z+x=0\)(3)

\(A=0< =>\hept{\begin{cases}x+y=0\\y+z=0\\x+z=0\end{cases}}\)(4)

Từ 3 và 4 \(=>x=y=z=0\)

Vậy nghiệm của pt trên là : {x;y;z}={0;0;0}

Bình luận (0)
 Khách vãng lai đã xóa
H24
23 tháng 4 2020 lúc 10:19

Đặt :\(\left(xy\right)^2+2\left(yz\right)^4+...+100\left(zx\right)^{100}=A\)

Ta thấy các số mũ đều chẵn 

Nên \(A\ge0\left(1\right)\)

Đặt : \(-\left[\left(x+y+z\right)+2\left(yz+zx+xy\right)+...+99\left(x+y+z\right)\right]=B\)

Vì có dấu âm ở trước VT

Nên \(B\le0\left(2\right)\)

Từ 1 và 2 <=> \(A=B=0\)

\(< =>x=y=z=0\)

Bình luận (0)
 Khách vãng lai đã xóa
DF
Xem chi tiết
TH
14 tháng 1 2021 lúc 10:38

Áp dụng bất đẳng thức AM - GM:

\(P\ge3\sqrt[3]{\dfrac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}\).

Áp dụng bất đẳng thức AM - GM ta có:

\(xy+1=xy+\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}\ge5\sqrt[5]{\dfrac{xy}{4^4}}\).

Tương tự: \(yz+1\ge5\sqrt[5]{\dfrac{yz}{4^4}};zx+1\ge5\sqrt[5]{\dfrac{zx}{4^4}}\).

Do đó \(\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)\ge125\sqrt[5]{\dfrac{\left(xyz\right)^2}{4^{12}}}\)

\(\Rightarrow\dfrac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}\ge125\sqrt[5]{\dfrac{1}{4^{12}\left(xyz\right)^3}}\).

Mà \(xyz\le\dfrac{\left(x+y+z\right)^3}{27}=\dfrac{1}{8}\)

Nên \(\dfrac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}\ge125\sqrt[5]{\dfrac{8^3}{4^{12}}}=125\sqrt[5]{\dfrac{1}{2^{15}}}=\dfrac{125}{8}\)

\(\Rightarrow P\ge\dfrac{15}{2}\).

Vậy...

 

 

 

Bình luận (0)
HN
17 tháng 1 2021 lúc 18:31

Áp dụng bất đẳng thức AM - GM:

P≥33√(xy+1)(yz+1)(zx+1)xyz.

Áp dụng bất đẳng thức AM - GM ta có:

xy+1=xy+14+14+14+14≥55√xy44.

Tương tự: yz+1≥55√yz44;zx+1≥55√zx44.

Do đó (xy+1)(yz+1)(zx+1)≥1255√(xyz)2412

⇒(xy+1)(yz+1)(zx+1)xyz≥1255√1412(xyz)3.

Mà xyz≤(x+y+z)327=18

Nên  (xy+1)(yz+1)(zx+1)xyz≥1255√83412=1255√1215=1258 

⇒P≥152.

Bình luận (0)
LH
Xem chi tiết
H24
Xem chi tiết
PE
Xem chi tiết
H24

Do \(x+y+z=0\)

\(\Rightarrow x=-\left(y+z\right)\Rightarrow x^2=\left(y+z\right)^2\Rightarrow4yz-x^2=4yz-\left(y+z^2\right)=-\left(y-z\right)^2\)

Tương tự \(4zx-y^2=-\left(z-x\right)^2\)

               \(4xy-z^2=-\left(x-y\right)^2\)

Ta lại có: \(yz+2x^2=yz+x^2-x\left(y+z\right)=yz+x^2-xy-xz=\left(x-y\right)\left(x-z\right)\)

Tương tự: \(zx+2y^2=\left(y-x\right)\left(y-z\right)\)

                \(xy+2z^2=\left(y-z\right)\left(y-y\right)\)

\(P=\frac{\left(4yz-x^2\right)\left(4zx-y^2\right)\left(4xy-z^2\right)}{\left(yz+2x^2\right)\left(zx+2y^2\right)\left(xy+2z^2\right)}=\frac{-\left(y-z\right)^2\left(z-x\right)^2\left(x-y^2\right)}{\left(x-y\right)\left(x-z\right)\left(y-x\right)\left(y-z\right)\left(z-x\right)\left(z-y\right)}\)

\(=\frac{-\left(y-z\right)^2\left(z-x\right)^2\left(x-y\right)^2}{-\left(y-z\right)^2\left(z-x\right)^2\left(x-y\right)^2}=1\)

Bình luận (0)