cho 3 số thực dương z;y;z thỏa mãn x+y+z<hoạc = 3/2
tìm GTNN của biểu thức :
\(P=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\)
Cho các số thực dương x,y,z thỏa mãn \(x+y+z\ge3\).
Tìm giá trị nhỏ nhất của biểu thức \(A=x^3+y^3+z^3\).
Lời giải:
Áp dụng BĐT Cô-si:
$x^3+1+1\geq 3x$
$y^3+1+1\geq 3y$
$z^3+1+1\geq 3z$
$\Rightarrow x^3+y^3+z^3+6\geq 3(x+y+z)\geq 3.3=9$
$\Rightarrow A=x^3+y^3+z^3\geq 3$
Vậy $A_{\min}=3$. Giá trị này đạt tại $x=y=z=1$
Cho các số thực dương x,y,z thỏa mãn \(x+y+z\ge3\).
Tìm giá trị nhỏ nhất của biểu thức \(A=x^3+y^3+z^3\).
\(A=\left(x^3+1+1\right)+\left(y^3+1+1\right)+\left(z^3+1+1\right)-6\)
\(A\ge3\sqrt[3]{x^3}+3\sqrt[3]{y^3}+3\sqrt[3]{z^3}-6=3\left(x+y+z\right)-6\ge3.3-6=3\)
\(A_{min}=3\) khi \(x=y=z=1\)
cho 3 số thực dương x,y,z thỏa mãn x+y+z=3.chứng minh:
\(\dfrac{x}{y^3+xy}+\dfrac{y}{z^3+zx}+\dfrac{z}{x^3+xy}\)≥\(\dfrac{3}{2}\)
cho các số thực dương x, y, z thỏa mãn x+y+z=1
chứng minh\(\sqrt{x+2y}+\sqrt{y+2z}+\sqrt{z+2x}=< 3\)
Cho 3 số thực dương x,y,z thỏa mãn x^2+y^2+z^2=1.Chứng minh x^5+y^6+z^7<1
Do \(x^2+y^2+z^2=1\Rightarrow x^2< 1\Rightarrow x< 1\)
\(\Rightarrow x^5< x^2\)
Tương tự ta có: \(y< 1\Rightarrow y^6< y^2\); \(z< 1\Rightarrow z^7< z^2\)
\(\Rightarrow x^5+y^6+z^7< x^2+y^2+z^2\)
\(\Rightarrow x^5+y^6+z^7< 1\)
cho x,y,z là 3 số thực dương thỏa mãn x2+y2+z2=\(\dfrac{3}{4}\)
Cmr:2(1-x)(1-y)\(\ge\)z
Với mọi x;y;z ta luôn có:
\(\left(x+y-1\right)^2+\left(z-\dfrac{1}{2}\right)^2\ge0\)
\(\Leftrightarrow x^2+y^2+2xy-2x-2y+1+z^2-z+\dfrac{1}{4}\ge0\)
\(\Leftrightarrow x^2+y^2+z^2+\dfrac{5}{4}+2xy-2x-2y-z\ge0\)
\(\Leftrightarrow2+2xy-2x-2y\ge z\)
\(\Leftrightarrow2\left(1-x\right)\left(1-y\right)\ge z\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=z=\dfrac{1}{2}\)
cho 3 số thực dương x,y,z thỏa mãn : x^2+y^3+z=1.Chứng minh rằng x^2018+y^2019+z^2020<1
Cho các số thực dương x,y,z. Tìm GTNN của biểu thức \(A=\dfrac{x}{y}+\sqrt{\dfrac{y}{z}}+\sqrt[3]{\dfrac{z}{x}}\).
Cho các số thực dương x,y,z. Tìm GTNN của biểu thức \(A=\dfrac{x}{y}+\sqrt{\dfrac{y}{z}}+\sqrt[3]{\dfrac{z}{x}}\).
Cho 3 số thực dương x,y,z.Cmr:
1/(x^3+y^3+xyz) +1/(y^3+z^3+xyz) +1/(z^3+x^3+xyz)<hoặc =1/xyz
Ta có: \(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\ge\left(x+y\right)\left(2xy-xy\right)=xy\left(x+y\right)\)
\(\Rightarrow VT\le\dfrac{1}{xy\left(x+y\right)+xyz}+\dfrac{1}{yz\left(y+z\right)+xyz}+\dfrac{1}{zx\left(z+x\right)+xyz}\)
\(\Rightarrow VT\le\dfrac{1}{x+y+z}\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\right)=\dfrac{1}{x+y+z}.\left(\dfrac{x+y+z}{xyz}\right)=\dfrac{1}{xyz}\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z\)