Tìm x biết:
( 3x-2) ( 4x-5 ) - ( 2x-1 ) ( 6x+2 ) = 0
Tìm x biết
1. 2(5x-8)-3(4x-5)=4(3x-4)+11
2. (2x+1)2-(4x-1).(x-3)-15=0
3. (3x-1).(2x-7)-(1-3x).(6x-5)=0
1) \(\Rightarrow10x-16-12x+15=12x-16+11\)
\(\Rightarrow14x=4\Rightarrow x=\dfrac{2}{7}\)
2) \(\Rightarrow4x^2+4x+1-4x^2+13x-3-15=0\)
\(\Rightarrow17x=17\Rightarrow x=1\)
3) \(\Rightarrow\left(3x-1\right)\left(2x-7+6x-5\right)=0\)
\(\Rightarrow\left(2x-3\right)\left(3x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
2: Ta có: \(\left(2x+1\right)^2-\left(4x-1\right)\left(x-3\right)-15=0\)
\(\Leftrightarrow4x^2+4x+1-4x^2+12x+x-3-15=0\)
\(\Leftrightarrow17x=17\)
hay x=1
tìm x biết
a) (6x-3) (2x+4) + (4x-1) (5-3x) = -21
b) 6x (3x+5) - 2x (9x-2) + (17-x) (x-1) + x (x-18) =0
c) (15-2x) (4x+1) - (13-4x) (2x-3) - (x-1) (x+2) + x2=52
d) (8x-3) (3x+2) - (4x+7) (x+4) = (2x+1) (5x-1) - 33
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x2 - 16x - 34 = 10x2 + 3x - 34
=> 10x2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0
hoặc 10x - 19 = 0 => 10x = 19 => x = 19/10
Vậy x = 0 ; x = 19/10
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x 2 - 16x - 34 = 10x 2 + 3x - 34
=> 10x 2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0 hoặc 10x - 19 = 0
=> 10x = 19
=> x = 19/10
Vậy x = 0 ; x = 19/10
a) ( 6x - 3 ) ( 2x + 4 ) + ( 4x - 1 ) ( 5 - 3x ) = -21
<=> 12x2 + 24x - 6x - 12 + 20x - 12x2 - 5 + 3x = -21
<=> 41x = -21 + 12 + 5
<=> 41x = -4
<=> x = -4/41
I) THỰC HIỆN PHÉP TÍNH a) 2x(x^2-4y) b)3x^2(x+3y) c) -1/2x^2(x-3) d) (x+6)(2x-7)+x e) (x-5)(2x+3)+x II phân tích đa thức thành nhân tử a) 6x^2+3xy b) 8x^2-10xy c) 3x(x-1)-y(1-x) d) x^2-2xy+y^2-64 e) 2x^2+3x-5 f) 16x-5x^2-3 g) x^2-5x-6 IIITÌM X BIẾT a)2x+1=0 b) -3x-5=0 c) -6x+7=0 d)(x+6)(2x+1)=0 e)2x^2+7x+3=0 f) (2x-3)(2x+1)=0 g) 2x(x-5)-x(3+2x)=26 h) 5x(x-1)=x-1 IV TÌM GTNN,GTLN. a) tìm giá trị nhỏ nhất x^2-6x+10 2x^2-6x b) tìm giá trị lớn nhất 4x-x^2-5 4x-x^2+3
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
Tìm x,biết
(3x-2)(4x-5)-(2x-1)(6x+2)=0
\(\left(3x-2\right)\left(4x-5\right)-\left(2x-1\right)\left(6x+2\right)=0\)
<=> \(12x^2-15x-8x+10-\left(12x^2+4x-6x-2\right)=\) \(0\)
<=> \(12x^2-23x+10-12x^2-4x+6x+2=0\)
<=> \(12x^2-21x+12=0\)
(3x - 2)(4x - 5) - (2x - 1)(6x + 2) = 0
=> 12x2 - 15x - 8x + 10 - (12x2 - 4x - 6x - 2) = 0
=> 12x2 - 15x - 8x + 10 - 12x2 + 4x + 6x + 2 = 0
=> (12x2 - 12x2) - (15x + 8x - 4x - 6x) + (10 + 2) = 0
=> 0 - 13x + 12 = 0
=> 13x = - 12
=> x = -12/13
\(\left(3x-2\right)\left(4x-5\right)-\left(2x-1\right)\left(6x+2\right)=0\)
\(\left(12x^2-15x-8x+10\right)-\left(12x^2-4x-6x-2\right)=0\)
\(12x^2-15x-8x+10-12x^2+4x+6x+2=0\)
\(-15x-8x+10+6x+2=0\)
\(\left(-15x-8x+6x\right)+10+2=0\)
\(-17x+10+2=0\)
\(-17x+10=-2\)
\(-17x=-12\)
\(x=\frac{12}{17}\)
Tìm x biết
( 3x-2) ( 4x-5 ) - ( 2x-1 ) ( 6x+2 ) = 0
(3x - 2)(4x - 5) - (2x - 1)(6x + 1) = 0
12x2 - 15x - 8x + 10 - 12x2 - 2x + 6x + 1 = 0
- 19x = - 11
x = 11/19
Tìm x, biết:
a) (2x+2)(x-1)-(x+2)(2x+1)=0;
b)(3x+1)(2x-3)-6x(x+2)=16;
c)(12x-5)(4x-1)+(3x-7)(1-16x)=81
mn ơi giúp mik vs ạ :<
a: =>2x^2-2x+2x-2-2x^2-x-4x-2=0
=>-5x-4=0
=>x=-4/5
b: =>6x^2-9x+2x-3-6x^2-12x=16
=>-19x=19
=>x=-1
c: =>48x^2-12x-20x+5+3x-48x^2-7+112x=81
=>83x=83
=>x=1
Tìm x
a) 3x(4x - 3) - 2x(5 - 6x) = 0
b) 5(2x - 3) + 4x(x - 2) + 2x(3 - 2x) = 0
c) 3x(2 - x) + 2x(x - 1) = 5x(x + 3)
d) 3x (x + 1) - 5x(3 - x) + 6(x^2 + 2x + 3) = 0
a) 3x(4x-3)-2x(5-6x)=0
\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)
\(\Leftrightarrow24x^2-19x=0\)
\(\Leftrightarrow x\left(24x-19\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\24x-19=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\24x=19\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{19}{24}\end{matrix}\right.\)
Vậy x=0 hoặc x=\(\dfrac{19}{24}\)
b) 5(2x-3)+4x(x-2)+2x(3-2x)=0
\(\Leftrightarrow\)10x-15+4x2-8x+6x-4x2=0
\(\Leftrightarrow8x-15=0\)
\(\Leftrightarrow8x=15\)
\(\Leftrightarrow x=\dfrac{15}{8}\)
vậy x=\(\dfrac{15}{8}\)
c)3x(2-x)+2x(x-1)=5x(x+3)
\(\Leftrightarrow6x-3x^2+2x^2-2x=5x^2+15x\\ \Leftrightarrow4x-x^2=5x^2+15x\\ \Leftrightarrow4x-x^2-5x^2-15x=0\\ \)
\(\Leftrightarrow-6x^2-11x=0\\ \Leftrightarrow-x\left(6x+11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\6x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\6x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-11}{6}\end{matrix}\right.\)
Vậy x=0 hoặc x=\(\dfrac{-11}{6}\)
Tìm x biết
a) -2x(2-3x)+3(-5+7x-6x2)= -4
b) -3x(-1+3x-4x2)+6x2(-2x+3)= 0
\(a,-2x\left(2-3x\right)+3\left(-5+7x-6x^2\right)=-4\)
\(\Rightarrow-4x+6x^2-15+21x-18x^2=-4\)
\(\Rightarrow-12x^2+17x-11=0\)
\(\Rightarrow12x^2-17x+11=0\)
\(\Rightarrow9x^2-2.3.\frac{17}{6}x+\left(\frac{17}{6}\right)^2-\left(\frac{17}{6}\right)^2+11=0\)
\(\Rightarrow\left(3x-\frac{17}{6}\right)^2+\frac{107}{36}=0VN\)
Không có gt x thỏa mãn
\(b,-3x\left(-1+3x-4x^2\right)+6x^2\left(-2x+3\right)=0\)
\(\Rightarrow3x-9x^2+12x^3-12x^3+18x^2=0\)
\(\Rightarrow9x^2+3x=0\)
\(\Rightarrow3x\left(3x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x=0\\3x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\3x=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=-\frac{1}{3}\end{cases}}}\)
hfjjfjfjfrtrf
( 3x-2) ( 4x-5 ) - ( 2x-1 ) ( 6x+2 ) = 0
(3x - 2)(4x - 5 ) - (2x - 1)(6x + 2) = 0
12x2 - 15x - 8x + 10 - 12x2 - 4x + 6x + 2 = 0
- 21x = -12
x = 4/7
Tìm x biết
1.(x+3)2-(x+2).(x-2)=4x+17
2.(2x+1)2-(4x-1).(x-3)-15=0
3.(2x+3).(x-1)+(2x-3).(1-x)=0
4.2(5x-8)-3(4x-5)=4(3x-4)+11
5.(3x-1).(2x-7)-(1-3x).(6x-5)=0
1: Ta có: \(\left(x+3\right)^2-\left(x+2\right)\left(x-2\right)=4x+17\)
\(\Leftrightarrow x^2+6x+9-x^2+4-4x=17\)
\(\Leftrightarrow x=2\)
3: Ta có: \(\left(2x+3\right)\left(x-1\right)+\left(2x-3\right)\left(1-x\right)=0\)
\(\Leftrightarrow2x^2-2x+3x-3+2x-2x^2-3+3x=0\)
\(\Leftrightarrow6x=6\)
hay x=1