Tìm giá trị nhỏ nhất của: \(\left|x-2016\right|+\left|x-1\right|\)
Tìm giá trị nhỏ nhất của P=\(\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\)
\(\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\)
\(=\left|x-2015\right|+\left|2017-x\right|+\left|x-2016\right|\)
\(\ge\left|x-2015+2017-x\right|+\left|x-2016\right|\)
\(=2+\left|x-2016\right|\ge2\)
Dấu "=" khi \(\hept{\begin{cases}x-2016=0\\\left(x-2015\right)\left(2017-x\right)\ge0\end{cases}}\Leftrightarrow x=2016\)
Tìm giá trị nhỏ nhất của biểu thức \(A=\left|x-2016\right|+\left|x-1\right|\)
Tìm giá trị nhỏ nhất của biểu thức: P=\(\left|x-2015\right|+\left|2016-x\right|+\left|x-2017\right|\)
Tìm giá trị nhỏ nhất của biểu thức P=\(\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\)
Tìm giá trị nhỏ nhất của \(A=\left|x-2016\right|+\left|x-2017\right|\)\(+\left|x-2015\right|\)
\(A=\left|x-2016\right|+\left|x-2017\right|+\left|x-2015\right|\)
\(A= \left|x-2016\right|+\left|2017-x\right|+\left|x-2015\right|\)
\(A\ge\left|x-2016\right|+\left|2017-x+x-2015\right|\)
\(A\ge\left|x-2016\right|+2\ge2\)
\("="\Leftrightarrow\hept{\begin{cases}x=2016\\2015\le x\le2017\end{cases}}\Leftrightarrow x=2016\)
tìm giá trị nhỏ nhất của biểu thức A=\(\frac{\left|x-2016\right|+2017}{\left|x-2106\right|+2018}\)
Câu 1: Giá trị nhỏ nhất của
\(\left|x-3\right|+\left|Y+3\right|+2016\) là:...
Câu 2: Giá trị của x để biểu thức:
\(M=\left(2x-1\right)^2+\left(2y-1\right)+2013\)Đạt giá trị nhỏ nhất
Câu 3: Giá trị x>0 thỏa mãn (x-10)+(2x-6)=8
\(A=\left|x-3\right|+\left|y+3\right|+2016\)
\(\left|x-3\right|\ge0\)
\(\left|y+3\right|\ge0\)
\(\Rightarrow\left|x-3\right|+\left|y+3\right|+2016\ge2016\)
Dấu ''='' xảy ra khi \(x-3=y+3=0\)
\(x=3;y=-3\)
\(MinA=2016\Leftrightarrow x=3;y=-3\)
\(\left(x-10\right)+\left(2x-6\right)=8\)
\(x-10+2x-6=8\)
\(3x=8+10+6\)
\(3x=24\)
\(x=\frac{24}{3}\)
x = 8
Tìm giá trị nhỏ nhất của:
\(A=\left|x-2016\right|+\left|x-2017\right|+\left|x\right|-2018\)
GIúp mình giả nhé ,mình tick cho
Bài 1 )
Tìm giá trị lớn nhất của : \(A=\frac{2016}{x^2-2x+2017}\)
Bài 2 :
Tìm giá trị nhỏ nhất của biểu thức sau :
a ) \(\frac{20}{6x-9x^2-21}\)
b ) \(\left(x-1\right)\left(x-2\right)\left(x-5\right)\left(x-6\right)\)
Bài 1 : \(A=\frac{2016}{x^2-2x+2017}\) đạt GTLN khi \(x^2-2x+2017\) đạt GTNN .
\(x^2-2x+2017=x^2-2x+1+2016=\left(x-1\right)^2+2016\Rightarrow GTNN\) của \(x^2-2x+2017\) là \(2016\)
\(\Rightarrow GTLN\) của \(A\) là : \(\frac{2016}{2016}=1\)
Bài 2 :
a ) Đặt \(A=\frac{2}{6x-9x^2-21}.A\) đạt \(GTNN\) Khi \(\frac{1}{A}\) đạt \(GTLN\).
Ta có : \(\frac{1}{A}=\frac{-9x^2+6x-21}{20}=-\frac{9}{20}\left(x-\frac{1}{3}\right)^2-1\le-1\)
Vậy \(Max\left(\frac{1}{A}\right)=-1\Leftrightarrow x=\frac{1}{3}\)
\(\Rightarrow Min_A=-1\Rightarrow x=\frac{1}{3}\)
b ) Đặt \(B=\left(x-1\right)\left(x-2\right)\left(x-5\right)\left(x-6\right)\)
Ta có : \(B=\left[\left(x-1\right)\left(x-6\right)\right].\left[\left(x-2\right)\left(x-5\right)\right]=\left(x^2-7x+6\right)\left(x^2-7x+10\right)\)
Đặt \(y=x^2-7x+8\Rightarrow B=\left(y+2\right)\left(y-2\right)=y^2-4\ge-4\)
\(Min_B=-4\) khi và chỉ khi \(x^2-7x+8=0\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{7+\sqrt{17}}{2}\\x=\frac{7-\sqrt{17}}{2}\end{array}\right.\)