Những câu hỏi liên quan
KL
Xem chi tiết
AH
27 tháng 8 2021 lúc 9:43

Lời giải:

a. $-x^2-2x-8=-7-(x^2+2x+1)=-7-(x+1)^2$
Vì $(x+1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên

$-x^2-2x-8=-7-(x+1)^2\leq -7< 0$ với mọi $x\in\mathbb{R}$

Vậy biểu thức luôn nhận giá trị âm với mọi $x$

b.

$-x^2-5x-11=-11+2,5^2-(x^2+5x+2,5^2)< -11+3^2-(x+2,5)^2$

$=-2-(x+2,5)^2\leq -2< 0$ với mọi $x\in\mathbb{R}$ (đpcm)

c.

$-4x^2-4x-2=-1-(4x^2+4x+1)=-1-(2x+1)^2\leq -1< 0$ với mọi $x\in\mathbb{R}$ (đpcm)

d.

$-9x^2+6x-7=-6-(9x^2-6x+1)=-6-(3x-1)^2\leq -6< 0$ với mọi $x\in\mathbb{R}$ (đpcm)

Bình luận (0)
HK
Xem chi tiết
TD
21 tháng 9 2022 lúc 19:59

Không biê

Bình luận (0)
H24
Xem chi tiết
NT
20 tháng 9 2021 lúc 21:18

a: ta có: \(A=x^2-3x+10\)

\(=x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{31}{4}\)

\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{31}{4}>0\forall x\)

b: Ta có: \(B=x^2-5x+2021\)

\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{8015}{4}\)

\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{8015}{4}>0\forall x\)

Bình luận (0)
H24
Xem chi tiết
NT
20 tháng 9 2021 lúc 21:42

\(E=x^2+6x+11\)

\(=x^2+6x+9+2\)

\(=\left(x+3\right)^2+2>0\forall x\)

\(F=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

Bình luận (1)
KL
Xem chi tiết
H24
30 tháng 8 2021 lúc 21:52

a) \(9x^2-6x+11=\left(3x\right)^2-2.3x+1+10=\left(3x-1\right)^2+10>0\forall x\)

b) \(3x^2-12x+81=3.\left(x^2-4x+9\right)=3.\left(x-2\right)^2+15>0\forall x\)

c) \(5x^2-5x+4=5.\left(x^2-x+\dfrac{4}{5}\right)=5.\left(x^2-x+\dfrac{1}{4}+\dfrac{11}{20}\right)=5.\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}>0\forall x\)

d) \(2x^2-2x+9=2.\left(x^2-x+\dfrac{9}{2}\right)=2.\left(x-\dfrac{1}{2}\right)^2+\dfrac{17}{2}>0\forall x\)

Bình luận (0)
RH
30 tháng 8 2021 lúc 21:53

a) = (3x-1)^2+10

Do (3x-1)^2>=0 với mọi x

--> (3x-1)^2+10>0 với mọi x

Bình luận (0)
LL
30 tháng 8 2021 lúc 21:53

a) \(9x^2-6x+11=\left(3x-1\right)^2+10\ge10>0\)

b) \(3x^2-12x+81=3\left(x-2\right)^2+69\ge69>0\)

c) \(5x^2-5x+4=5\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}>0\)

d) \(2x^2-2x+9=2\left(x-\dfrac{1}{2}\right)^2+\dfrac{17}{2}\ge\dfrac{17}{2}>0\)

Bình luận (0)
H24
Xem chi tiết
H24
30 tháng 6 2021 lúc 9:02

Bài 1

\(A=x^2-6x+15=x^2-2.3.x+9+6=\left(x-3\right)^2+6>0\forall x\)

\(B=4x^2+4x+7=\left(2x\right)^2+2.2.x+1+6=\left(2x+1\right)^2+6>0\forall x\)

Bài 2

\(A=-9x^2+6x-2021=-\left(9x^2-6x+2021\right)=-\left[\left(3x-1\right)^2+2020\right]=-\left(3x-1\right)^2-2020< 0\forall x\)

 

Bình luận (0)
H24
Xem chi tiết
H24
18 tháng 9 2023 lúc 22:52

\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)

\(=10x-5x^2-\left(x^2+x+9x+9\right)\)

\(=10x-5x^2-x^2-x-9x-9\)

\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)

\(=-6x^2-9\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow-6x^2\le0\forall x\)

\(\Rightarrow-6x^2-9\le-9< 0\forall x\)

hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).

\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)

\(=3x^2+x^2-4xy-12x+4xy+12x+1\)

\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)

\(=4x^2+1\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow4x^2\ge0\forall x\)

\(\Rightarrow4x^2+1\ge1>0\forall x\)

hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).

#\(Toru\)

Bình luận (0)
H24
Xem chi tiết
VN
13 tháng 9 2018 lúc 20:03

câu a: 9x^2-6x+2=(3x-1)^2+1>=1>0 mọi x 

câu b:x^2+x+1=(x-1/2)^2+3/4>0 với mới x

Bình luận (0)
VN
13 tháng 9 2018 lúc 20:06

2 câu cuối ko rõ đề

Bình luận (0)
PB
Xem chi tiết
CT
22 tháng 5 2019 lúc 14:42

a) Ta có P = ( 4 x 2 − 1 ) ( 2 x + 1 ) − ( 2 x − 1 ) − ( 4 x 2 − 1 ) ( 2 x + 1 ) ( 2 x − 1 ) = 3 − 4 x 2  

b) Ta có  Q = 3 x ( x + 3 ) . ( x + 3 ) ( x − 3 ) − x = 9 − 3 x x + 3

Bình luận (0)