Những câu hỏi liên quan
KB
Xem chi tiết
KT
5 tháng 8 2018 lúc 7:38

Ta có:  \(\left(x+\sqrt{x^2+3}\right)\left(\sqrt{x^2+3}-x\right)=3\)

            \(\left(y+\sqrt{y^2+3}\right)\left(\sqrt{y^2+3}-y\right)=3\)

Kết hợp với giả thiết ta có:

\(\sqrt{x^2+3}-x=y+\sqrt{y^2+3}\)

\(\sqrt{y^2+3}-y=x+\sqrt{x^2+3}\)

Cộng theo vế ta được: \(-\left(x+y\right)=x+y\)

\(\Rightarrow\)\(E=x+y=0\)

Bình luận (0)
ND
5 tháng 8 2018 lúc 7:53

\(\left(x+\sqrt{x^2+3}\right)\left(y+\sqrt{y^2+3}\right)=3\)

\(\Leftrightarrow\left(x+\sqrt{x^2+3}\right)\left(x-\sqrt{x^2+3}\right)\left(y+\sqrt{y^2+3}\right)=3\left(x-\sqrt{x^2+3}\right)\)

\(\Leftrightarrow\left(x^2-x^2-3\right)\left(y+\sqrt{y^2+3}\right)=3\left(x-\sqrt{x^2+3}\right)\)

\(\Leftrightarrow-3\left(y+\sqrt{y^2+3}\right)=3\left(x-\sqrt{x^2+3}\right)\)

\(\Leftrightarrow-y-\sqrt{y^2+3}=x-\sqrt{x^2+3}\)(*)

Tương tự, nhân mỗi vế vs \(y-\sqrt{y^2+3}\), ta được:

\(-x-\sqrt{x^2+3}=y-\sqrt{y^2+3}\)(**)

Cộng (*) và (**) suy ra :

\(-y-x-\sqrt{y^2+3}-\sqrt{x^2+3}=x+y-\sqrt{x^2+3}-\sqrt{y^2+3}\)

\(\Leftrightarrow-y-x=x+y\Leftrightarrow2\left(x+y\right)=0\Leftrightarrow x+y=0\)

Vậy \(E=0.\)

Bình luận (0)
ML
Xem chi tiết
LT
Xem chi tiết
NT
3 tháng 12 2021 lúc 14:41

e: \(f\left(-x\right)=\dfrac{\left(-x\right)^4+3\cdot\left(-x\right)^2-1}{\left(-x\right)^2-4}=\dfrac{x^4+3x^2-1}{x^2-4}=f\left(x\right)\)

Vậy: f(x) là hàm số chẵn

Bình luận (0)
NM
3 tháng 12 2021 lúc 14:47

\(c,f\left(-x\right)=\sqrt{-2x+9}=-f\left(x\right)\)

Vậy hàm số lẻ

\(d,f\left(-x\right)=\left(-x-1\right)^{2010}+\left(1-x\right)^{2010}\\ =\left[-\left(x+1\right)\right]^{2010}+\left(x-1\right)^{2010}\\ =\left(x+1\right)^{2010}+\left(x-1\right)^{2010}=f\left(x\right)\)

Vậy hàm số chẵn

\(g,f\left(-x\right)=\sqrt[3]{-5x-3}+\sqrt[3]{-5x+3}\\ =-\sqrt[3]{5x+3}-\sqrt[3]{5x-3}=-f\left(x\right)\)

Vậy hàm số lẻ

\(h,f\left(-x\right)=\sqrt{3-x}-\sqrt{3+x}=-f\left(x\right)\)

Vậy hàm số lẻ

Bình luận (0)
DA
Xem chi tiết
NL
Xem chi tiết
TN
8 tháng 9 2018 lúc 21:39

Từ \(\left(x+\sqrt{x^2+3}\right)\left(y+\sqrt{y^2+3}\right)=3\)

\(\Leftrightarrow\left(x+\sqrt{x^2+3}\right)\left(y+\sqrt{y^2+3}\right)\left(\sqrt{x^2+3}-x\right)=3\left(\sqrt{x^2+3}-x\right)\)

\(\Leftrightarrow y+\sqrt{y^2+3}=\sqrt{x^2+3}-x\)

Tương tự \(x+\sqrt{x^2+3}=\sqrt{y^2+3}-y\)

Cộng theo vế ta có: \(2\left(x+y\right)=0\)

\(\Leftrightarrow E=0\)

Bình luận (0)
PC
8 tháng 9 2018 lúc 21:57

\(\left(x+\sqrt{x^2+3}\right)\left(x-\sqrt{x^2+3}\right)\left(y+\sqrt{y^2+3}\right)=3\left(x-\sqrt{x^2-3}\right)\) 

\(\Leftrightarrow\left(x^2-x^2+3\right)\left(y+\sqrt{y^2+3}\right)=3\left(x-\sqrt{x^2+3}\right)\) 

\(\Leftrightarrow y+\sqrt{y^2+3}=x-\sqrt{x^2+3}\) (1)

Tương tự \(x+\sqrt{x^2+3}=y-\sqrt{y^2+3}\) (2)

Từ (1) và (2)\(\Rightarrow x+y=0\)

Bình luận (0)
NN
21 tháng 10 2020 lúc 20:39

\(\left(x+\sqrt{x^2+3}\right)\left(y+\sqrt{y^2+3}\right)=3\)(1)

Vì \(\sqrt{x^2+3}\ge\sqrt{x^2}=\left|x\right|\)

\(\Rightarrow\sqrt{x^2+3}-x\ge0\)

Nhân cả 2 vế của (1) với \(\sqrt{x^2+3}-x\)ta được:

\(\left(x+\sqrt{x^2+3}\right)\left(\sqrt{x^2+3}-x\right)\left(y+\sqrt{y^2+3}\right)=3\left(\sqrt{x^2+3}-x\right)\)

\(\Leftrightarrow\left(x^2+3-x^2\right)\left(y+\sqrt{y^2+3}\right)=3\left(\sqrt{x^2+3}-x\right)\)

\(\Leftrightarrow3\left(y+\sqrt{y^2+3}\right)=3\left(\sqrt{x^2+3}-x\right)\)

\(\Leftrightarrow y+\sqrt{y^2+3}=\sqrt{x^2+3}-x\)

\(\Rightarrow x+y=\sqrt{x^2+3}-\sqrt{y^2+3}\)(2)

Tương tự ta có: \(\sqrt{y^2+3}-y\ge0\)

Nhân cả 2 vế của (1) với \(\sqrt{y^2+3}-y\)ta được:

\(x+\sqrt{x^2+3}=\sqrt{y^2+3}-y\)

\(\Rightarrow x+y=\sqrt{y^2+3}-\sqrt{x^2+3}\)(3)

Cộng (2) với (3) ta được: \(2\left(x+y\right)=0\)\(\Leftrightarrow x+y=0\)

\(\Rightarrow E=x+y=0\)

Bình luận (0)
 Khách vãng lai đã xóa
HN
Xem chi tiết
PB
Xem chi tiết
TC
Xem chi tiết
NQ
Xem chi tiết
NH
10 tháng 9 2017 lúc 11:38

22222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222

Bình luận (0)