Những câu hỏi liên quan
H24
Xem chi tiết
SG
12 tháng 8 2016 lúc 9:23

Vì \(\left|x+\frac{8}{5}\right|\ge0;\left|2,2-2y\right|\ge0\)

=> \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\ge0\)

Mà theo đề bài \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\le0\)

=> \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|=0\)

=>\(\hept{\begin{cases}\left|x+\frac{8}{5}\right|=0\\\left|2,2-2y\right|=0\end{cases}}\)=>  \(\hept{\begin{cases}x+\frac{8}{5}=0\\2,2-2y=0\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{-8}{5}\\2y=2,2\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{-8}{5}\\y=1,1=\frac{11}{10}\end{cases}}\)

Bình luận (0)
MM
12 tháng 8 2016 lúc 9:16

kb vs mk nha

Bình luận (0)
TV
12 tháng 8 2016 lúc 9:23

k minh nha Yumi

Bình luận (0)
DT
Xem chi tiết
MH
8 tháng 1 2016 lúc 9:16

|x+8/5| + |2,2-2y| = 0 ( không thể < 0 )

=> x + 8/5 = 2,2 - 2y = 0

=> x = -8/5; 2y = 2,2

=> x = -8/5; y = 1,1

Bình luận (0)
TT
8 tháng 1 2016 lúc 9:17

\(y=1,1\)

x=-8/5

Bình luận (0)
ND
8 tháng 1 2016 lúc 21:21

|x+8/5| + |2,2-2y| = 0 ( không thể < 0 )

=> x + 8/5 = 2,2 - 2y = 0

=> x = -8/5; 2y = 2,2

=> x = -8/5; y = 1,1

Bình luận (0)
DH
Xem chi tiết
LG
Xem chi tiết
SG
4 tháng 7 2016 lúc 15:08

\(Do\left|x+\frac{8}{5}\right|\ge0;\left|2,2-2y\right|\ge0=>\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\ge0\)

\(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\le0=>\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|=0\)

\(=>\hept{\begin{cases}\left|x+\frac{8}{5}\right|=0\\\left|2,2-2y\right|=0\end{cases}=>\hept{\begin{cases}x+\frac{8}{5}=0\\2,2-2y=0\end{cases}=>\hept{\begin{cases}x=-\frac{8}{5}\\2y=2,2\end{cases}=>\hept{\begin{cases}x=-1,6\\y=1,1\end{cases}}}}}\)

Vậy x = -1,6; y = 1,1

Ủng hộ mk nha ^_-

Bình luận (0)
CC
Xem chi tiết
NH
Xem chi tiết
TN
Xem chi tiết
TN
Xem chi tiết
TL
19 tháng 5 2020 lúc 20:16

HSG toán 9 Quảng Nam năm 2018-2019

Giải: Từ đẳng thức đã cho suy ra: \(x>\frac{1}{2};y>\frac{1}{2};z>\frac{1}{2}\). Áp dụng (a+b)2 >= 4ab ta có:

\(\left(x+2y\right)^2=\left(\frac{2x+y}{2}+\frac{3y}{2}\right)^2\ge4\cdot\left(\frac{2x+y}{2}\right)\cdot\frac{3y}{2}\)

\(\Rightarrow\left(x+2y\right)^2\ge3y\left(2x+y\right)\). Dấu "=" xảy ra <=> x=y

\(\Rightarrow\frac{2x+y}{x+2y}\le\frac{x+2y}{3y}\Rightarrow\frac{2x+y}{x\left(x+2y\right)}\le\frac{1}{3}\left(\frac{2}{x}+\frac{1}{y}\right)\)

Tương tự \(\hept{\begin{cases}\frac{2y+z}{y\left(y+2z\right)}\le\frac{1}{3}\left(\frac{2}{y}+\frac{1}{z}\right)\\\frac{2z+x}{z\left(z+2x\right)}\le\frac{1}{3}\left(\frac{2}{z}+\frac{1}{x}\right)\end{cases}}\)

\(\Rightarrow A\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\left("="\Leftrightarrow x=y=z\right)\)

Ta có \(\sqrt{\left(2x-1\right)\cdot1}\le\frac{\left(2x-1\right)+1}{2}\Rightarrow\sqrt{2x-1}\le2\Rightarrow\frac{1}{x}\le\frac{1}{\sqrt{2x-1}}\)

Tương tự \(\frac{1}{y}\le\frac{1}{\sqrt{2y-1}},\frac{1}{z}\le\frac{1}{\sqrt{2z-1}}\)Do đó:

\(A\le\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}=3\)

Dấu "=" xảy ra <=> x=y=z=1

Vậy GTLN của A=3 đạt được khi x=y=z=1

Bình luận (0)
 Khách vãng lai đã xóa
HP
Xem chi tiết
ND
9 tháng 4 2021 lúc 22:32

Ta có: \(\hept{\begin{cases}\left(2x-5\right)^{2018}\ge0\left(\forall x\right)\\\left(3y+4\right)^{2020}\ge0\left(\forall y\right)\end{cases}}\Rightarrow\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\ge0\left(\forall x,y\right)\)

Mà \(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\le0\left(\forall x,y\right)\)

\(\Rightarrow\hept{\begin{cases}\left(2x-5\right)^{2018}=0\\\left(3y+4\right)^{2020}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x-5=0\\3y+4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{4}{3}\end{cases}}\)

Khi đó thay vào ta được: 

\(M+5\cdot\left(\frac{5}{2}\right)^2-2\cdot\frac{5}{2}\cdot\left(-\frac{4}{3}\right)=6\cdot\left(\frac{5}{2}\right)^2+9\cdot\frac{5}{2}\cdot\left(-\frac{4}{3}\right)-\left(-\frac{4}{3}\right)^2\)

\(\Leftrightarrow M+\frac{455}{12}=\frac{103}{18}\)

\(\Rightarrow M=-\frac{1159}{36}\)

Bình luận (0)
 Khách vãng lai đã xóa