Tìm x và y : \(\frac{x+5}{-7}=\frac{5}{30-y}=\frac{7^2}{49}\)
\(\frac{x+5}{-7}=\frac{5}{30-y}=\frac{7^2}{49}\)
\(\frac{x+5}{-7}=\frac{5}{30-y}=\frac{49}{49}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{x+5}{-7}=1\\\frac{5}{30-y}=1\end{cases}\Leftrightarrow\hept{\begin{cases}x+5=-7\\5=30-y\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-7-5\\y=30-5\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-12\\y=25\end{cases}}}\)
\(\frac{x+5}{-7}=\frac{5}{30-y}=\frac{7^2}{49}\)
\(\frac{x+5}{-7}=\frac{5}{30-y}=\frac{49}{49}=1\)
\(\Rightarrow\frac{x+5}{-7}=\frac{-7}{-7}\) và \(\frac{5}{30-y}=\frac{5}{5}\)
\(\Rightarrow x=-12;y=25\)
\(\frac{x+5}{-7}=\frac{5}{30-y}=\frac{7^2}{49}=\frac{49}{49}=1\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x+5}{-7}=1\\\frac{5}{30-y}=1\end{cases}\Leftrightarrow\hept{\begin{cases}x+5=-7\\30-y=5\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-7-5\\y=30-5\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-12\\y=25\end{cases}}}\)
bài 1 tìm x,y,z
a,\(\frac{x}{10}\)=\(\frac{y}{15}\),x=\(\frac{7}{2}\)và x+2y-3z=20
b,2x=3y,49=57 và 4x-3y+5z=7
c,\(\frac{2x}{3}\)=\(\frac{3y}{4}\)=\(\frac{47}{5}\)và x+y+z=49
2 tìm x trong các tỉ lệ thức sau
a, \(\frac{x-3}{x+5}=\frac{5}{7}\)
b,\(\frac{7}{x-1}\)\(=\frac{x+1}{9}\)
c \(\frac{x+4}{20}=\frac{5}{x+4}\)
d,\(\frac{x-1}{x+2}=\frac{x-2}{x+3}\)
bài 3: tìm các số x,y,z
a,\(\frac{x}{y}=\frac{7}{10}=\frac{z}{9}\)
b,\(\frac{x}{y}=\frac{9}{7};\frac{y}{z}=\frac{7}{3}\) và x-y+z=-15
c,\(\frac{x}{y}=\frac{7}{20};\frac{y}{z}=\frac{5}{8}\)và 2x+5y-2z=100
bài 4 tìm các số x,y,z
a,5x=8y=20z và x-y-z=3
b ,\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\)và -x+y+z=-120
bài 5 tìm x,y,z biết
và xyz=20
bài 6 tìm x,y,z biết
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\)và x2 + y2 -z2 =585
\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)
\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)
\(\Rightarrow x=165;y=20;z=25\)
Tìm x , y ϵ Z biết :
\(a,\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) và x + y + z = 49
\(b,\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
Viết lại thành : \(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)
Dựa theo tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
-> x = \(12.\dfrac{3}{2}=18\)
y =\(12.\dfrac{4}{3}=16\)
z =\(12.\dfrac{5}{4}\) = 15
Tìm x,y,z biết :
a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)và 5 x + y - 2z = 28
b)\(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)và 2x + 3y -z = 125
c)\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)và x + y + z = 49
d) \(\frac{x}{2}=\frac{y}{3}\)và xy = 54
\(a,\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
\(\frac{x}{10}=2\Rightarrow x=10.2=20\)
\(\frac{y}{6}=2\Rightarrow y=2.6=12\)
\(\frac{z}{21}=2\Rightarrow z=21.2=42\)
\(d,\frac{x}{2}=\frac{y}{3}=k\)\(\Rightarrow x=2k;y=3k\)
\(\Rightarrow ab=2k.3k=6k^2=54\)
\(\Rightarrow k^2=9\Leftrightarrow k=3\)
\(\frac{x}{2}=3\Rightarrow x=6\)
\(\frac{y}{3}=3\Rightarrow y=9\)
a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)
Vậy x = 20; y = 12; z = 42
b) Ta có: \(\frac{x}{3}=\frac{y}{4}\) => \(\frac{x}{15}=\frac{y}{20}\)
\(\frac{y}{5}=\frac{z}{7}\) => \(\frac{y}{20}=\frac{z}{28}\)
=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)=> \(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{125}{62}=\frac{125}{62}\)
=> \(\hept{\begin{cases}\frac{x}{15}=\frac{125}{62}\\\frac{y}{20}=\frac{125}{62}\\\frac{z}{28}=\frac{125}{62}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{125}{62}.15=\frac{1875}{62}\\y=\frac{125}{62}.20=\frac{1250}{31}\\z=\frac{125}{62}.28=\frac{1750}{31}\end{cases}}\)
Vậy ...
b) \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{2x}{30}=\frac{3y}{60};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{3y}{60}=\frac{z}{28}\)
\(\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)
Áp dụng dãy tỉ số bằng nhau:
đến đây dễ rồi bạn tự lm tiếp nhé
c) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)
\(\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Áp dụng dãy tỉ số bằng nhau:
.............
d) Ta có:
\(xy=54\Rightarrow x=\frac{54}{y}\)
\(\frac{x}{2}=\frac{\frac{54}{y}}{2}=54.\frac{2}{y}=\frac{108}{y}\)
Ta lại có:\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{108}{y}=\frac{y}{3}\Rightarrow y^2=324\Leftrightarrow y=18\)
thay vào \(\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{2}=\frac{18}{3}\Leftrightarrow x=12\)
Vậy.....
Tìm x,y,z biết :
a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{24}\) và 5x+y-2z= 28
b) \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)và 2x+3y-z= 186
c) 3x=2y; 7y=5z và x-y+z= 32
d) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) và x+y+z=49
e)\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và 2x +3y-z= 49
a) Ta có: x/10=y/6=z/24 và 5x+y—2x=28
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
x/10=y/6=z/24=5x/50+y/6–2x/48= 5x+y—2x/50+6–48=28/ 8
Ta được: x= 10.28/8=35
y= 6.28/8=21
z=24.28/8=84
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
a, x/10 =y/6=z/24= 5x/50=y/6=2z/48
áp dụng tính chất dãy tỉ số bằng nhau
5x/50=y/6=2z/48= 5x+y-2z/50+6-48=28/2=14
==>x=140
y=84
z=336
b,x/6=y/4;y/5=z/7
==>x/15=y/20 (1)
y/20=z/28 (2)
từ 1 và 2 => x/15=y/20=z/28
x/15=y/20=z/28=2x/30=3y/60=z/28
áp dụng tính chất dãy tỉ số bàng nhau
2x/30=3y/60=z/38=2x+3y-z/30+60-28=186/62=3
=>x=45
=>y=60
=>z=84
tìm x,y,z biết
a,\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{4}\)và x-y+z=-49
b,\(\frac{x}{3}=\frac{y}{4};\frac{y}{4}=\frac{z}{7}\)và 2x+3y-z=186
c,\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}vàx^2-y^2+2z^2=108\)
a) Ta có : x/2=y/3; y/5=z/4 =>
= x/10=y/15 ; y/15= z/12
=> x/10= y/15=z/12
Ap dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/10=y/15=z/12 = x-y+z / 10-15+12 = (-49)/7 = (-7)
+) Vì x/10 =(-7) => x=(-70)
+) Vì y/15 =(-7) => y=(-105)
+) Vì z/12 =(-7) => z=(-84)
NHẤN ĐÚNG NHA BẠN !
b)
Ta có: x/3=y/4 ; y/4=z/7 => x/3 = y/4=z/7
Ta có: x/3=y/4=z/7 = 2.x/2.3 =3.y/3.4 = z/7
= 2.x/6 = 3.y/12 = z/7
Ap dụng tính chất của dãy tỉ số bằng nhau, ta có:
2.x/6 = 3.y/12 = z/7 = 2.x+3.y-z/ 6+12-7
=186/11
Từ đó tính được x,y,z nha
NHẤN ĐÚNG NHA BẠN
bay gio o so thu nguoi ta cho hut thuoc roi
3) tìm x,y,z
a) \(\frac{x}{3}=\frac{y}{2};\frac{z}{5}=\frac{y}{4}\) và -x - y + z = -10
b) \(\frac{x}{2}=\frac{y}{3};\frac{z}{5}=\frac{y}{7}\) và x +y + z = 92
c) \(\frac{x}{3}=\frac{y}{4};\frac{z}{5}=\frac{y}{7}\) và 2x + 3y -z = 186
d) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) và \(x^2-y^2+2z^2=108\)
e) 2x = 3y ; 5y = 7z và 3x - 7y + 5c = 30
f) 2x = 3y = 4z và x + y + z = 169
g*) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và x - 2y + 3z = 14
h*) \(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}\) và x +y + z = 48
a/ \(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\) ; Suy ra \(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\) hay \(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}=\frac{-x-y+z}{-6-4+5}=\frac{-10}{-5}=2\)
Suy ra : x = 2.6 = 12
y = 2.4 = 8
z = 2.5 = 10
b,c,d tương tự
e/ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) ; \(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)
Tới đây bạn làm tương tự a,b,c,d
f tương tự.
g/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Leftrightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
Bạn áp dụng dãy tỉ số bằng nhau là ra.
h/ Áp dụng dãy tỉ số bằng nhau :
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)
Từ đó lại suy ra \(\begin{cases}12x=15y\\20z=12x\\15y=20z\end{cases}\)
Rút ra tỉ số và áp dụng dãy tỉ số bằng nhau.
\(1.\frac{x}{3}=\frac{y}{4}vàx+y=14\)
\(2.\frac{x}{5}=\frac{y}{3}vàx-y=20\)
\(3.\frac{x}{7}=\frac{y}{4}vàx-y=30\)
\(4.\frac{x}{5}=\frac{y}{7}vàx-y=48\)
\(5.\frac{x}{3}=\frac{y}{6}vàx+y=90\)
\(6.\frac{x}{-2}=\frac{y}{5}vàx+y=12\)
\(7.\frac{x}{4}=\frac{y}{-7}vàx-y=33\)
\(8.\frac{x}{3}=\frac{y}{2}và2x+5y=32\)
\(9.\frac{x}{5}=\frac{y}{2}và3x-2y=44\)
\(10.\frac{x}{3}=\frac{y}{5}và2x+4y=28\)
Tìm x, y biết
mk làm mẫu 2 bài đầu nhé, các bài còn lại bạn làm tương tự, các bài này đều áp dụng tính chất dãy tỉ số bằng nhau
1) Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{14}{7}=2\)
suy ra: \(\frac{x}{3}=2\)=> \(x=6\)
\(\frac{y}{4}=2\)=> \(y=8\)
Vậy...
2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{3}=\frac{x-y}{5-3}=\frac{20}{2}=10\)
suy ra: \(\frac{x}{5}=10\)=> \(x=50\)
\(\frac{y}{3}=10\)=> \(y=30\)
Vậy...
Tìm x,y,z. Làm theo cách đặt k dùm em nhakk
m) \(\frac{x}{2}=\frac{2y}{5}=\frac{4z}{7}\)và 3x+5y+7z=123
n) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)và x+y+z=49
p) \(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}\)và xyz= -108
r) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và xy+yz+zx=104
s) \(\frac{x}{2}=\frac{y}{5}=\frac{z}{4}\)và x2-xy+3yz=54
t) \(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\)và x2+y2-z2=585
u) \(\frac{x}{2}=\frac{y}{3}\frac{z}{4}\)và x3+y3+z3=792
m: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{\dfrac{5}{2}}=\dfrac{z}{\dfrac{7}{4}}=\dfrac{3x+5y+7z}{3\cdot2+5\cdot\dfrac{5}{2}+7\cdot\dfrac{7}{4}}=\dfrac{123}{\dfrac{123}{4}}=4\)
Do đó: x=8; y=10; z=7
n: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó: x=18; y=16; z=15