Cho tam giác ABC có 3 góc nhọn .Các đường cao BD và CE . C/m góc ADE = góc ABC
Cho tam giác ABC có 3 góc nhọn, các đường cao BD và CE. CMR góc ADE=góc ABC
Tam giác ADE và tg ABC có
\(\hept{\begin{cases}\widehat{A}chung\\\\\frac{AD}{AE}=\frac{AB}{AC}\left(\frac{AD}{AB}=\cos\widehat{A}=\frac{AE}{AC}\right)\end{cases}}\)
Suy ra ADE đồng dạng ABC
=> đpcm
Cho tam giác ABC nhọn, các đường cao BD và CE. Chứng minh góc ABC = góc ADE cắt đường cao BD và CE Bạn nào giải nhanh giúp mk với nha, mk đang gấp
cho tam giác ABC nhọn. Các đường cao BD và CE cắt nhau tai H.
a) tam giác ABD đồng dạng tam giác ACE
b) HB.HD= HC.HE
c) góc ADE= góc ABC
d) Trên các đoạn BD và CE lấy M và N sao cho góc AMC= góc ANB = 90 độ
mình làm được câu a, b, c rồi các bạn giúp mình câu d nhé thank
Cho tam giác ABC có ba góc nhọn, các đường cao BD,CE. Cm:góc ADE=góc ABC
giúp mk bài này
a) + ΔABD ∼ ΔACE ( g.g )
⇒ABAD=ACAE⇒ABAC=ADAE⇒ABAD=ACAE⇒ABAC=ADAE
b) + ΔBHE ∼ ΔCHD ( g.g )
⇒HBHE=HCHD⇒HBHE=HCHD
⇒HB⋅HD=HC⋅HE⇒HB⋅HD=HC⋅HE
c) + ΔADE ∼ ΔABC ( c.g.c )
⇒ADEˆ=ABCˆ
Tam giác ADE và tg ABC có
góc A chung
AD/AE=AB/AC ( AD/AB=cos góc A =AE/AC)
suy tam giác ADE đong dang zs tam giác ABC
Gọi M là trung điểm của BC
Lúc đó thì EM, DM lần lượt là trung tuyến ứng với cạnh huyền của hai tam giác vuông BEC, BDC
\(\Rightarrow MB=ME=MC=MD\)
Do đó tam giác BEM; CMD và EDM cân tại M
Ta có: \(\widehat{ADE}=180^0-\widehat{MDE}-\widehat{MDC}\)
\(=180^0-\frac{180^0-\widehat{EMD}}{2}-\frac{180^0-\widehat{DMC}}{2}\)
\(=\frac{\widehat{EMD}+\widehat{DMC}}{2}=\frac{180^0-\widehat{EMB}}{2}=\frac{2\widehat{MBE}}{2}=\widehat{ABC}\)
Vậy \(\widehat{ADE}=\widehat{ABC}\left(đpcm\right)\)
Cho tam giác ABC có 3 góc nhọn , các đường cao BD và CE cắt nhau tại H
a. CMR: tam giác ABD đồng dạng với tam giác ACE
b. CMR: HB.HD=HC.HE
c.Cm: GÓC ADE= GÓC ABC
vẽ hình
a xét tam giác ABD và tam giác ACE có :
chung góc BAC
góc BDA = góc CEA = 90 độ
=> tam giác ABD đồng dạng tam giác ACE (g.g)
b, xét tam giác EHB và tam giác DHC có
góc BDC = góc CFB = 90 độ
góc BHF = góc DHC ( đối đỉnh )
=> tam giác EHB đồng dạng với tam giác DHC (g.g)
=> \(\frac{HB}{HC}=\frac{HE}{HD}\)
=> HD . HB = HE . HC ( đpcm )
c, vì tam giác ABD đồng dạng với tam giác ACE ( câu a)
=> \(\frac{AB}{AC}=\frac{AD}{AE}\) => \(\frac{AE}{AC}=\frac{AD}{AB}\)
xét tam giác ADE và tam giác ABC có
chung góc BAC
\(\frac{AE}{AC}=\frac{AD}{AB}\)
=> tam giác ADE đồng dạng với tam giác ABC ( c.g.c)
=> góc ADE = góc ABC ( đpcm)
Cho tam giác ABC ccas góc đều nhọn. Các đường cao BD và CE cắt nhau tại A
a) Chứng minh tam giác ABD đồng dạng tam giác ABE
b) Chứng minh HBHD=HC x HE, góc ADE=góc ABC
a, Xét Δ ABD và Δ ABE, có :
\(\widehat{ADB}=\widehat{AEB}=90^o\)
\(\widehat{BAD}=\widehat{BAE}\) (góc chung)
=> Δ ABD ∾ Δ ABE (g.g)
b, Xét Δ EHB và Δ DHC, có :
\(\widehat{EHB}=\widehat{DHC}\) (đối đỉnh)
\(\widehat{HEB}=\widehat{HDC}=90^o\)
=> Δ EHB ∾ Δ DHC (g.g)
=> \(\dfrac{EH}{DH}=\dfrac{HB}{HC}\)
=> \(HB.HD=HC.HE\)
Cho tam giác ABC nhọn , hai đường cao CE , BD . Chứng minh góc ADE = góc ABC
http://vchat.vn/pictures/service/2016/07/clo1468398982.PNG
copy trnag nay roi vao
suy ra góc ADE = góc ABC nhé
Cho tam giác ABC nhọn, 2 đường cao BD và CE
a, C/m: góc AED=góc ACB
b, Nếu A=60 và S tam giác ABC=120cm2. Tính S tam giác ADE.
~NHỜ CÁC BẠN GIÚP MÌNH TÍ NHÉ!~
cho tam giác ABC có 3 góc nhọn, các đường cao BD và CE cắt nhau tại H a, CM tam giác ABD đồng dạng với tam giác ACE
b, chứng minh góc ADE = góc ABC
c, gọi K là giao điểm của AH và BC, F là giao điểm của DK và HC cm HE.CF=CE.HF
giúp phần c vs ạ
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
góc A chung
=>ΔABD đồng dạng với ΔACE
b: ΔABD đồng dạng với ΔACE
=>AD/AE=AB/AC
=>AD/AB=AE/AC
=>ΔADE đồng dạng với ΔABC
=>góc ADE=góc ABC