Những câu hỏi liên quan
NN
Xem chi tiết
TH
12 tháng 4 2021 lúc 21:43

4: Đặt \(x=\dfrac{a+b}{a-b};y=\dfrac{b+c}{b-c};z=\dfrac{c+a}{c-a}\).

Ta có \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=\dfrac{2a.2b.2c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\left(x-1\right)\left(y-1\right)\left(z-1\right)\)

\(\Rightarrow xy+yz+zx=-1\).

Bất đẳng thức đã cho tương đương:

\(x^2+y^2+z^2\ge2\Leftrightarrow\left(x+y+z\right)^2-2\left(xy+yz+zx\right)-2\ge0\Leftrightarrow\left(x+y+z\right)^2\ge0\) (luôn đúng).

Vậy ta có đpcm

Bình luận (1)
LD
12 tháng 4 2021 lúc 21:48

mình xí câu 45,47,51 :>

45. a) Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\dfrac{1}{a}+\dfrac{2}{b}=\dfrac{1}{a}+\dfrac{4}{2b}\ge\dfrac{\left(1+2\right)^2}{a+2b}=\dfrac{9}{a+2b}\left(đpcm\right)\)

Đẳng thức xảy ra <=> a=b

b) Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}\ge\dfrac{\left(1+1+1\right)^2}{a+b+b}=\dfrac{9}{a+2b}\)(1)

\(\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{b+c+c}=\dfrac{9}{b+2c}\)(2)

\(\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{a}\ge\dfrac{\left(1+1+1\right)^2}{c+a+a}=\dfrac{9}{c+2a}\)(3)

Cộng (1),(2),(3) theo vế ta có đpcm

Đẳng thức xảy ra <=> a=b=c

Bình luận (0)
LD
12 tháng 4 2021 lúc 21:50

47. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\dfrac{\left(a+b\right)^2}{c}+\dfrac{\left(b+c\right)^2}{a}+\dfrac{\left(c+a\right)^2}{b}\ge\dfrac{\left(a+b+b+c+c+a\right)^2}{a+b+c}=\dfrac{\left[2\left(a+b+c\right)\right]^2}{a+b+c}=\dfrac{4\left(a+b+c\right)^2}{a+b+c}=4\left(a+b+c\right)\)(đpcm)

Đẳng thức xảy ra <=> a=b=c

Bình luận (0)
PD
Xem chi tiết
NT
17 tháng 7 2021 lúc 0:07

1) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay AH=4,8(cm)

 

Bình luận (0)
MT
Xem chi tiết
NH
1 tháng 8 2016 lúc 19:38

bài 26: gọi quãng đường đi là S

=|> thời gian đi với v1: t1=S/12

  thòi gia đi quãng đường với v2 là :t2=S/15

theo đề ta có pt: t1=t2+1

<=>\(\frac{S}{12}=\frac{S}{15}+1\)

<=> \(\frac{S}{60}=1\)

=> S=60km

 

Bình luận (1)
MV
Xem chi tiết
DL
6 tháng 3 2022 lúc 19:41

1. Định nghĩa hai tam giác bằng nhau

Các trường hợp bằng nhau của tam giác vuông hay, chi tiết

Hai tam giác bằng nhau là hai tam giác có các cạnh tương ứng bằng nhau, các góc tương ứng bằng nhau.

Để kí hiệu sự bằng nhau của tam giác ABC và tam giác A’B’C’ ta viết :

Các trường hợp bằng nhau của tam giác vuông hay, chi tiết

2. Các trường hợp bằng nhau của tam giác vuông

• Hai cạnh góc vuông

Các trường hợp bằng nhau của tam giác vuông hay, chi tiết

Nếu hai cạnh góc vuông của tam giác vuông này lần lượt bằng hai cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau (cạnh – góc – cạnh )

• Cạnh góc vuông và góc nhọn kề cạnh đó

Các trường hợp bằng nhau của tam giác vuông hay, chi tiết

Nếu một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông này bằng một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông kia thì hai tam giác vuông đó bằng nhau ( góc – cạnh – góc )

• Cạnh huyền – góc nhọn

Các trường hợp bằng nhau của tam giác vuông hay, chi tiết

Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng cạnh huyền và một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau ( góc – cạnh – góc)

• Cạnh huyền – cạnh góc vuông

Các trường hợp bằng nhau của tam giác vuông hay, chi tiết

Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này bằng cạnh huyền và một cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.

1. Định nghĩa hai tam giác bằng nhau

Các trường hợp bằng nhau của hai tam giác hay, chi tiết

Hai tam giác bằng nhau là hai tam giác có các cạnh tương ứng bằng nhau, các góc tương ứng bằng nhau.

Để kí hiệu sự bằng nhau của tam giác ABC và tam giác A’B’C’ ta viết : Các trường hợp bằng nhau của hai tam giác hay, chi tiết

2. Các trường hợp bằng nhau của tam giác

a. Trường hợp bằng nhau thứ nhất của tam giác cạnh – cạnh – cạnh (c.c.c)

Các trường hợp bằng nhau của hai tam giác hay, chi tiết

Nếu ba cạnh của tam giác này bằng ba cạnh của tam giác kia thì hai tam giác đó bằng nhau.

Xét Các trường hợp bằng nhau của hai tam giác hay, chi tiết có:

AB = A’B’

AC = A’C’

BC = B’C’

thì Các trường hợp bằng nhau của hai tam giác hay, chi tiết

b. Trường hợp bằng nhau thứ hai của tam giác: cạnh – góc – cạnh (c.g.c) 

b. Trường hợp bằng nhau thứ hai của tam giác: cạnh – góc – cạnh (c.g.c)

Các trường hợp bằng nhau của hai tam giác hay, chi tiết

Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa của tam giác kia thì hai tam giác đó bằng nhau

Các trường hợp bằng nhau của hai tam giác hay, chi tiết

c. Trường hợp bằng nhau thứ ba của hai tam giác: góc – cạnh – góc

Các trường hợp bằng nhau của hai tam giác hay, chi tiết

Nếu một cạnh và hai góc kề của tam giác này bằng một cạnh và hai góc kề của tam giác kia thì hai tam giác đó bằng nhau.

Các trường hợp bằng nhau của hai tam giác hay, chi tiết

tik cho mình nha mình đc câu1 nè

Bình luận (0)
DN
Xem chi tiết
BH
12 tháng 8 2017 lúc 11:26

\(\frac{1024}{\left(17x2^5+15x2^5\right)}=\frac{2^{10}}{32x2^5}=\frac{2^{10}}{2^5.2^5}=\frac{2^{10}}{2^{10}}=1\)  (1024=210; 32=25)

Bình luận (0)
HN
12 tháng 8 2017 lúc 11:27

chị giúp nhưng phải k cho c nhé.

\(1024:\left(17x2^5+15x2^5\right)\)

\(=\)\(1024:\left[\left(17+15\right)x2^5\right]\)

\(=1024:\left(32x2^5\right)\)

\(=2^{10}:\left(2^5x2^5\right)\)

\(=2^{10}:2^{10}=1\)

Bình luận (0)
PD
12 tháng 8 2017 lúc 11:29

1024:(17 x 2 \(^5\)+15 x 2\(^5\))=1024 :[2\(^5\)x(17+15)

                                          =1024:32x32=1204

Bình luận (0)
AW
Xem chi tiết
NL
20 tháng 3 2022 lúc 11:17

17.

Gọi số vi khuẩn ban đầu là x

Sau 5 phút số vi khuẩn là: \(x.2^5=64000\Rightarrow x=2000\)

Sau k phút:

\(2000.2^k=2048000\Rightarrow2^k=1024=2^{10}\)

\(\Rightarrow k=10\)

Bình luận (0)
NL
20 tháng 3 2022 lúc 11:22

18.

\(S_{2019}=\left(\dfrac{1}{2}\right)^1+1+\left(\dfrac{1}{2}\right)^2+1+...+\left(\dfrac{1}{2}\right)^{2019}+1\)

\(=\left(\dfrac{1}{2}\right)^1+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{2019}+2019\)

Xét \(S=\left(\dfrac{1}{2}\right)^1+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{2019}\) là tổng cấp số nhân với \(\left\{{}\begin{matrix}u_1=\dfrac{1}{2}\\q=\dfrac{1}{2}\\n=2019\end{matrix}\right.\)

\(\Rightarrow S=\dfrac{1}{2}.\dfrac{\left(\dfrac{1}{2}\right)^{2019}-1}{\dfrac{1}{2}-1}=1-\dfrac{1}{2^{2019}}\)

\(\Rightarrow S_{2020}=2019+S=2020-\dfrac{1}{2^{2019}}\)

19. C là khẳng định sai, ví dụ: \(u_n=2\) ; \(v_n=-\dfrac{1}{n}\)

Bình luận (0)
NM
Xem chi tiết
NL
Xem chi tiết
H24
28 tháng 12 2020 lúc 20:14

CHỊU!!!!!!!!!!!! THẾ NÀY AI MÀ BIẾT ĐƯỢC?!?!??!?!?!?!??!?

Bình luận (0)
PT
28 tháng 12 2020 lúc 20:25

Bức ảnh cho ta thấy một người vượt qua rất nhiều chiếc thang để leo đến bưc tường. Điều đó cho ta thấy rằng "Con nguoi phải cố gắng vượt qua mọi khó khăn gian khổ thì mới thành công đc"

Mks đoán thế đấy, chẳng bt đúng hay sai đâu  😄😄😄

Bình luận (0)
HV
Xem chi tiết
NT
4 tháng 5 2021 lúc 13:03

Câu 1: 

const fi='dulieu.dat'

fo='thaythe.out'

var f1,f2:text;

a:array[1..100]of string;

n,d,i,vt:integer;

begin

assign(f1,fi); reset(f1);

assign(f2,fo); rewrite(f2);

n:=0;

while not eof(f1) do 

  begin

n:=n+1;

readln(f1,a[n]);

end;

for i:=1 to n do 

  begin

d:=length(a[i]);

vt:=pos('anh',a[i]);

while vt<>0 do 

  begin

delete(a[i],vt,3);

insert('em',a[i],vt);

vt:=pos('anh',a[i]);

end;

end;

for i:=1 to n do 

  writeln(f2,a[i]);

close(f1);

close(f2);

end.

Bình luận (0)
NT
4 tháng 5 2021 lúc 13:05

Câu 2: 

uses crt;

const fi='mang.inp'

fo='sapxep.out'

var f1,f2:text;

a:array[1..100]of integer;

i,n,tam,j:integer;

begin

clrscr;

assign(f1,fi); rewrite(f1);

assign(f2,fo); rewrite(f2);

write('Nhap n='); readln(n);

for i:=1 to n do 

  begin

write('A[',i,']='); readln(a[i]);

end;

for i:=1 to n do 

  write(f1,a[i]:4);

for i:=1 to n-1 do 

  for j:=i+1 to n do 

if a[i]>a[j] then

begin

tam:=a[i];

a[i]:=a[j];

a[j]:=tam;

end;

for i:=1 to n do 

  write(f2,a[i]:4);

close(f1);

close(f2);

end.

Bình luận (0)