Những câu hỏi liên quan
MT
Xem chi tiết
HN
30 tháng 7 2016 lúc 22:36

Điều kiện : \(x\ne4\)

Biểu diễn : \(C=\frac{22-3x}{4-x}=\frac{3\left(4-x\right)+10}{4-x}=\frac{10}{4-x}+3\)

Ta có C đạt giá trị lớn nhất \(\Leftrightarrow\frac{10}{4-x}\)đạt giá trị lớn nhất \(\Leftrightarrow4-x\)đạt giá trị nhỏ nhất

Đến đây ta xét các trường hợp :

1. Với \(x>4\Rightarrow4-x< 0\Rightarrow\frac{10}{4-x}< 0\)

2. Với \(0\le x\le3\) \(\Rightarrow\frac{5}{2}\le\frac{10}{4-x}\le10\)

3. Với \(x< 0\), xét  \(f\left(x\right)=4-x\) có giá trị càng tăng khi x càng giảm (x < 0) , do đó f(x) nhỏ nhất tại x = -1

\(\Rightarrow\frac{10}{4-x}=2\)

So sánh các trường hợp , được \(MaxC=13\Leftrightarrow x=3\)

Bình luận (0)
MN
30 tháng 7 2016 lúc 22:12

giá trị lớn nhất là 13 tại x = 3

Bình luận (0)
H24
30 tháng 7 2016 lúc 22:21

\(\frac{22-3x}{4-x}=\frac{12-3x+10}{4-x}=3\frac{10}{4-x}\)

muốn C có giá trị lớn nhất thì 4-x phải đạt giá trị nhỏ nhất có thể và 4-x phải là số nguyên dương

=> 4-x>0 mà x là số nguyên nên giá trị của 4-x nhỏ nhất có thêr để C lớn nhất là 1

=> x=3

nếu x=3 , ta có:

10/4-x=10/4-3=10

vậy với x=3 thì C đạt GTLN và =10

Bình luận (0)
NB
Xem chi tiết
TC
30 tháng 7 2016 lúc 22:40

Ta có: 4 - x \(\ne\)0  \(\Leftrightarrow\) x \(\ne\)4

C = \(\frac{12-3x+10}{4-x}\)=\(\frac{3\left(4-x\right)}{4-x}+\frac{10}{4-x}\)\(3+\frac{10}{4-x}\)

Để C đạt GTLN thì \(\frac{10}{4-x}\)phải là GTLN, mà 10 là số nguyên dương nên 4 - x phải nguyên dương nhỏ nhất.

\(\Rightarrow\)4 - x = 1

\(\Leftrightarrow\)x = 3

Khi do: C = 13

Vậy GTLN của C =13 khi x = 3

Bình luận (0)
HL
Xem chi tiết
NH
5 tháng 12 2023 lúc 23:39

A = \(\dfrac{22-3x}{4-x}\)

A = \(\dfrac{3.\left(4-x\right)+10}{4-x}\)

A = 3 + \(\dfrac{10}{4-x}\)

A lớn nhất khi \(\dfrac{10}{4-x}\) lớn nhất. Vì 10 > 0; \(x\) \(\in\) Z nên \(\dfrac{10}{4-x}\) lớn nhất khi

 4 - \(x\) = 1 ⇒ \(x\) = 4 - 1 ⇒   \(x\) = 3

Vậy Amin  = 3 + \(\dfrac{10}{1}\) = 13 khi \(x\) =3

Kết luận giái trị lớn nhất của biểu thức là 13 xảy ra khi \(x\) = 3 

Bình luận (0)
HG
Xem chi tiết
AA
Xem chi tiết
TD
Xem chi tiết
KA
Xem chi tiết
KN
24 tháng 2 2020 lúc 16:47

\(M=\frac{14-x}{4-x}=\frac{10+4-x}{4-x}=1+\frac{10}{4-x}\)

M lớn nhất khi \(\frac{10}{4-x}\)lớn nhất (1)

Xét \(x< 4\)thì \(\frac{10}{4-x}>0\)

      \(x>4\)thì \(\frac{10}{4-x}< 0\)

Vậy ta chỉ quan tâm x < 4 hay 4 - x > 0 (2)

Từ (1) suy ra 4 - x có GTNN  (3)

Từ (2), (3) kết hợp với x nguyên suy ra 4 - x = 1 nên x = 3

Vậy GTLN của M là 11 khi và chỉ khi x = 3

Bình luận (0)
 Khách vãng lai đã xóa
LN
24 tháng 2 2020 lúc 16:56

\(A=\frac{14-x}{4-x}\)

 \(A=\frac{10+4-x}{4-x}\)

\(A=\frac{10}{4-x}+1\)

Để A lớn nhất thì  \(\frac{10}{4-x}\)lớn nhất

điều này xảy ra khi 4-x là số nguyên dương nhỏ nhất

tức là 4-x=1

x=3

Khi đó A=\(\frac{14-3}{4-3}=11\)

Vậy GTLN của A là 11 khi x=3

Bình luận (0)
 Khách vãng lai đã xóa
TL
Xem chi tiết
VM
20 tháng 1 2017 lúc 20:18

Làm khâu rút gọn thôi 

\(=\frac{15}{x+2}+\frac{42}{3x+6}\)

\(=\frac{15}{x+2}+\frac{42}{3\left(x+2\right)}\)

\(=\frac{3.15+42}{3\left(x+2\right)}\)

\(=\frac{87}{3\left(x+2\right)}\)

\(=\frac{29}{x+2}\)

Bình luận (0)
VM
20 tháng 1 2017 lúc 20:19

Câu b có phải để tử chia hết cho mẫu không nhỉ? Không chắc thôi để ngkh làm 

Bình luận (0)
TA
16 tháng 8 2017 lúc 16:02

a, A=15/x+2 +42/3x+6

      =45/3x+6 + 42/3x+6

      =87/3x+6 = 29x+2 

b,để A có giá trị là số nguyên thì 29 phải chia hết cho x+2 hay x+2 thuộc tập hợp ước của 29 mà Ư(29)={29;-29;1;-1} .

Xét từng trường hợp .C, lấy trường hợp lớn nhất và bé nhất

Bình luận (0)
HK
Xem chi tiết
NH
8 tháng 4 2023 lúc 18:52

A = \(\dfrac{2x-1}{x+2}\) 

a, A là phân số ⇔ \(x\) + 2  # 0  ⇒ \(x\) # -2

b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2 

                                          ⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2

                                         ⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2

                                         ⇒ 5 ⋮ \(x\) + 2

                            ⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}

                            ⇒  \(x\)   \(\in\) { -7; -3; -1; 3}

c, A = \(\dfrac{2x-1}{x+2}\) 

  A = 2 - \(\dfrac{5}{x+2}\)

Với \(x\) \(\in\) Z và \(x\) < -3 ta có

                     \(x\) + 2 < - 3 + 2 = -1

              ⇒  \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\)  = -5  ⇒ - \(\dfrac{5}{x+2}\)<  5

              ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)

Với \(x\)  > -3;  \(x\) # - 2; \(x\in\)  Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1

            \(\dfrac{5}{x+2}\) > 0  ⇒  - \(\dfrac{5}{x+2}\)  < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)

Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)

Kết hợp (1); (2) và(3)  ta có A(max) = 7 ⇔ \(x\) = -3

 

                     

             

                                   

     

 

            

Bình luận (0)