Giải hệ phương tr\(\begin{cases}x^3-3x^2+2=\sqrt{y^3+3y^2}\\3\sqrt{x-2}=\sqrt{y^2+8y}\end{cases}\)
Đồng bào thân thiện đáng yêu cứu toy với :((
Giải hệ phương trình : \(\hept{\begin{cases}\sqrt[3]{\frac{2x+1}{y+2}}+\sqrt[3]{\frac{y+2}{2x+1}}=2\\4x+3y=7\end{cases}}\)
Giải hệ phương trình : \(\hept{\begin{cases}\sqrt{x^2+2y+3}+2y-3=0_{ }\\2\left(2y^3+x^3\right)+3y\left(x+1\right)^2+6x\left(x+1\right)+2=0\end{cases}^{ }}\)
Giải hệ phương trình : \(\hept{\begin{cases}\sqrt{2x-3}=\left(y^2+2016\right)\left(5-y\right)+\sqrt{y}\\y\left(y-x+2\right)=3x+3\end{cases}}\)
Cảm ơn mọi người nhé hiuhiu <3
Câu 1: ĐK: x khác -1/2, y khác -2
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:
\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)
=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)
Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>
\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)
\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)
\(\Leftrightarrow a^2+1=2a\)
\(\Leftrightarrow\left(a-1\right)^2=0\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)
Giải các hệ phương trình sau :
a) \(\hept{\begin{cases}\sqrt{2x}-\sqrt{3y}=1\\x+\sqrt{3y}=\sqrt{2}\end{cases}}\) b) \(\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\x+\left(\sqrt{2}+1\right)y=1\end{cases}}\) c) \(\hept{\begin{cases}x-2\sqrt{2y}=\sqrt{5}\\\sqrt{2x}+y=1-\sqrt{10}\end{cases}}\) d) \(\hept{\begin{cases}\sqrt{3x}-\sqrt{2y}=1\\\sqrt{2x}+\sqrt{3y}=\sqrt{3}\end{cases}}\)
a) \(\hept{\begin{cases}\sqrt{2x}-\sqrt{3y}=1\left(1\right)\\x+\sqrt{3y}=\sqrt{2}\left(2\right)\end{cases}}\) ( ĐK \(x,y\ge0\) )
Từ (1) và (2)\(\Leftrightarrow\sqrt{2x}+x=1+\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}+\sqrt{2}+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1=0\\\sqrt{x}+\sqrt{2}+1=0\end{cases}}\)
\(\Leftrightarrow x=1\) ( Do \(x\ge0\) )
Thay \(x=1\) vào hệ (1) ta có :
\(\sqrt{2}-\sqrt{3y}=1\)
\(\Leftrightarrow\sqrt{3y}=\sqrt{2}-1\)
\(\Leftrightarrow y=\frac{3-2\sqrt{2}}{3}\) ( thỏa mãn )
P/s : E chưa học cái này nên không chắc lắm ...
\(b,\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)y=\sqrt{2}-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+y=\sqrt{2}-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\2y=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=-\frac{1}{2}\\x=\frac{\sqrt{2}-0.5}{\sqrt{2}-1}=\frac{3+\sqrt{2}}{2}\end{cases}}\)
\(d,\hept{\begin{cases}\sqrt{6x}-\sqrt{4y}=\sqrt{2}\\\sqrt{6x}+\sqrt{9y}=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}5\sqrt{y}=3-\sqrt{2}\\\sqrt{2x}+\sqrt{3y}=\sqrt{3}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{11-6\sqrt{2}}{25}\\x=\frac{9+6\sqrt{2}}{25}\end{cases}}\)
Giúp em giải các hệ phương trình này với
a)\(\begin{cases}x^4+2y^3-x=-\dfrac{1}{4}+3\sqrt{3}\\ y^4+2x^3-y=-\dfrac{1}{4}-3\sqrt{3}\end{cases}\)
b) \(\begin{cases} x+\dfrac{78y}{x^2+y^2}=20\\ y+\dfrac{78x}{x^2+y^2}=15\end{cases}\)
c) \(\begin{cases}\left(1-\dfrac{12}{y+3x}\right)\cdot \sqrt{x}=2\\ \left(1+\dfrac{12}{y+3x}\right)\cdot\sqrt{y}=6 \end{cases}\)
d) \(\begin{cases} \sqrt{x+1}+\sqrt[4]{x-1}-\sqrt{y^4+2}=y\\ x^2+2x(y-1)+y^2-6y+1=0\end{cases}\)
e) \(\begin{cases} \sqrt{4x^2+(4x-9)(x-y)}+\sqrt{xy}=3y\\ 4\sqrt{(x+2)(y+2x)}=3(x+3)\end{cases}\)
Giải hệ phương trình:
\(\orbr{\begin{cases}\sqrt{2x-y-1}+\sqrt{3y-1}=\sqrt{x}+\sqrt{x+2y}\\x^3-3x+2=2y^3-y^2\end{cases}}\)
Giải hệ ptr sau bằng phương pháp cộng
a) \(\begin{cases} (\sqrt{3}+1)x+(\sqrt{3}-1)y=\sqrt{3}\\ 2\sqrt{3}x-2y=3\sqrt{3} +1 \end{cases} \)
b) \(\begin{cases} x\sqrt{3}+y\sqrt{2}=1\\ x\sqrt{2}+y\sqrt{3}=\sqrt{3} \end{cases} \)
c) \(\begin{cases} (x-1)(y-2)=(x+1)(y-3)\\ (x-5)(y+4)=(x-4)(y+1) \end{cases} \)
a: \(\left\{{}\begin{matrix}\left(\sqrt{3}+1\right)x+\left(\sqrt{3}-1\right)y=\sqrt{3}\\2\sqrt{3}x-2y=3\sqrt{3}+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(\sqrt{3}+1\right)^2\cdot x+\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)y=\sqrt{3}\left(\sqrt{3}+1\right)\\2\sqrt{3}x-2y=3\sqrt{3}+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(4+2\sqrt{3}\right)+2y=3+\sqrt{3}\\2\sqrt{3}\cdot x-2y=3\sqrt{3}+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(4+2\sqrt{3}+2\sqrt{3}\right)=3+\sqrt{3}+3\sqrt{3}+1\\2\sqrt{3}\cdot x-2y=3\sqrt{3}+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=1\\2y=2\sqrt{3}-3\sqrt{3}-1=-\sqrt{3}-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=1\\y=\dfrac{-\sqrt{3}-1}{2}\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}x\sqrt{3}+y\sqrt{2}=1\\x\sqrt{2}+y\sqrt{3}=\sqrt{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\sqrt{6}+2y=\sqrt{2}\\x\sqrt{6}+3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2y-3y=\sqrt{2}-3\\x\sqrt{3}+y\sqrt{2}=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-y=\sqrt{2}-3\\x\sqrt{3}=1-y\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3-\sqrt{2}\\x\sqrt{3}=1-\sqrt{2}\left(3-\sqrt{2}\right)\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=3-\sqrt{2}\\x\sqrt{3}=1-3\sqrt{2}+2=3-3\sqrt{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=3-\sqrt{2}\\x=\sqrt{3}-\sqrt{6}\end{matrix}\right.\)
c: \(\left\{{}\begin{matrix}\left(x-1\right)\left(y-2\right)=\left(x+1\right)\left(y-3\right)\\\left(x-5\right)\left(y+4\right)=\left(x-4\right)\left(y+1\right)\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}xy-2y-y+2=xy-3x+y-3\\xy+4x-5y-20=xy+x-4y-4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-2x-y+2=-3x+y-3\\4x-5y-20=x-4y-4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-2x-y+3x-y=-3-2=-5\\4x-5y-x+4y=-4+20\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-2y=-5\\3x-y=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-6y=-15\\3x-y=16\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-5y=-15-16=-31\\x-2y=-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{31}{5}\\x=-5+2y=-5+\dfrac{62}{5}=\dfrac{37}{5}\end{matrix}\right.\)
Giải hệ phương trình:
\(1.\hept{\begin{cases}x^2-2x\sqrt{y}+2y=x\\y^2-2y\sqrt{z}+2z=y\\z^2-2z\sqrt{x}+2x=z\end{cases}}\)
\(2.\hept{\begin{cases}2x^3+2z^2+3z+3=0\\2y^3+2x^2+3x+3=0\\2z^3+2y^2+3y+3=0\end{cases}}\)
\(\hept{\begin{cases}x^2-2x\sqrt{y}+2y=x\\y^2-2y\sqrt{z}+2z=y\\z^2-2z\sqrt{x}+2x=z\end{cases}}\)
\(\Leftrightarrow x^2-2x\sqrt{y}+2y+y^2-2y\sqrt{z}+2z+z^2-2z\sqrt{x}+2x=x+y+z\)
\(\Leftrightarrow\left(x-\sqrt{y}\right)^2+\left(y-\sqrt{z}\right)^2+\left(z-\sqrt{x}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-\sqrt{y}=0\\y-\sqrt{z}=0\\z-\sqrt{x}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\sqrt{y}\\y=\sqrt{z}\\z=\sqrt{x}\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}x=y=z=0\\x=y=z=1\end{cases}}\)
\(\begin{cases}2\sqrt{x^2+3x+2}-\sqrt{x+1}=2y\sqrt{y^2+1}+9-y-6y^2\\\sqrt{x^2+3x+2}+3\sqrt{x+1}=y\sqrt{y^2+1}-6+3y+4y^2\end{cases}\)
\(\begin{cases}x^2-y-1=2\sqrt{2x-1}\\y^3-8x^3+3y^2+4y-2x+2=0\end{cases}\)
\(\begin{cases}\left(x+\sqrt{x^2+4}\right)\left(y+\sqrt{y^2+1}\right)=2\\27x^6=x^3+4x+2\end{cases}\)
\(\begin{cases}x-\sqrt{3y-2}=\sqrt{9y^2-6y}-x\sqrt{x^2+2}\\x+y+\sqrt{y+3}=4\end{cases}\)
2)ĐK:x\(\ge\frac{1}{2}\)
pt(2)\(\Leftrightarrow\left(y+1\right)^3\)+(y+1)=\(\left(2x\right)^3\)+2x
Xét hàm số: f(t)=\(t^3\)+t
f'(t)=3\(t^2\)+1>0,\(\forall\)t
\(\Rightarrow\)hàm số liên tục và đồng biến trên R
\(\Rightarrow\)y+1=2x
Thay y=2x-1 vào pt(1) ta đc:
\(x^2\)-2x=2\(\sqrt{2x-1}\)
\(\Leftrightarrow\left(x^2-4x+2\right)\left(1+\frac{4}{2x-2+2\sqrt{2x-1}}\right)=0\)
\(\Leftrightarrow x^2\)-4x+2=0(do(...)>0)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2+\sqrt{2}\Rightarrow y=3+2\sqrt{2}\\x=2-\sqrt{2}\Rightarrow y=3-2\sqrt{2}\end{array}\right.\)
4)ĐK:\(y\ge\frac{2}{3}\)
pt(1)\(\Leftrightarrow x-\sqrt{3y-2}=\sqrt{3y\left(3y-2\right)}-x\sqrt{x^2+2}\)
\(\Leftrightarrow x\left(\sqrt{x^2+2}+1\right)=\sqrt{3y-2}\left(\sqrt{3y}+1\right)\)
Xét hàm số:\(f\left(t\right)=t\left(\sqrt{t^2+2}+1\right)\)
\(\Rightarrow\)hàm số liên tục và đồng biến trên R
\(\Rightarrow x=\sqrt{3y-2}\)
Thay vào pt(2) ta đc:\(\sqrt{3y-2}+y+\sqrt{y+3}=4\)
\(\Leftrightarrow\sqrt{3y-2}-1+\sqrt{y+3}-2+y-1=0\)
\(\Leftrightarrow\left(y-1\right)\left(\frac{3}{\sqrt{3y-2}+1}+\frac{1}{\sqrt{y+3}+2}+1\right)=0\)
\(\Leftrightarrow y=1\Rightarrow x=1\)(do...)>0)
KL:...
Giải hệ phương trình: \(\hept{\begin{cases}\sqrt{x}+\sqrt{y}+2\left(x+y\right)^2=2\left(2+3xy\right)\\\sqrt{3x^4+6x^3y}+\sqrt{3y^4+6xy^3}=6\end{cases}}\)
giải hệ pt
\(\hept{\begin{cases}x+y-\sqrt{xy}=1\\\sqrt{x^2+3}-\sqrt{y^2+1}=4\end{cases}}\)
\(\hept{\begin{cases}5x^2-3y=x-3xy\\x^3-x^2=y^2-3y^3\end{cases}}\)
\(\hept{\begin{cases}x^3-8x=y^3+2y\\x^2-3y^2=6\end{cases}}\)
\(\hept{\begin{cases}x^3-8x=y^3+2y\\x^2-3y^2=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6\left(x^3-y^3\right)=6\left(8x+2y\right)\\x^2-3y^2=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6\left(x^3-y^3\right)=\left(x^2-3y^2\right)\left(8x+2y\right)\\x^2-3y^2=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}24xy^2-2x^2y-2x^3=0\\x^2-3y^2=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x\left(3y-x\right)\left(4y+x\right)=0\\x^2-3y^2=6\end{cases}}\)
Đơn giản rồi làm tiếp nhé
\(\hept{\begin{cases}5x^2-3y=x-3xy\\x^3-x^2=y^2-3y^3\end{cases}}\)
Với x = 0 thì y = 0
Với x \(\ne\)0 thì nhân pt trên cho x ta được
\(\Leftrightarrow\hept{\begin{cases}5x^3-3yx=x^2-3x^2y\left(1\right)\\x^3-x^2=y^2-3y^3\left(2\right)\end{cases}}\)
Lấy (1) + (2) vế theo vế được
\(\Leftrightarrow6x^3-3xy-x^2=x^2+y^2-3x^2y-3y^3\)
\(\Leftrightarrow6x^3-3xy-2x^2-y^2+3x^2y+3y^3=0\)
\(\Leftrightarrow\left(x+y\right)\left(3y^2-3xy-y+6x^2-2x\right)=0\)
Tới đây thì đơn giản roofin làm tiếp nhé