Cho : \(\frac{1}{101}+\frac{1}{102}+....+\frac{1}{200}\) . Chứng minh rằng :\(\frac{1}{2}< A< 1\)
Cho : \(\frac{1}{101}+\frac{1}{102}+....+\frac{1}{200}\) . Chứng minh rằng :\(\frac{1}{2}< A< 1\)
Chứng minh rằng
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
Lời giải:
Ta có:
\(\text{VT}=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}=\text{VP}\)
Ta có đpcm.
chứng minh rằng
\(A=\frac{1}{101}+\frac{1}{102}+....+\frac{1}{199}+\frac{1}{200}< 1\)1
Cho biểu thức A= \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+.....................+\frac{1}{200}\). Chứng minh rằng \(A>\frac{7}{12}\)
Số số hạng của A là:
(200-101):1+1=100(số)
Nếu ta nhóm A thành các nhóm,mỗi nhóm 50 số hạng ta được :
100:50=2(nhóm)
Ta có :
A=(1/101+1/102+...+1/150)+(1/151+1/152+1/153+...+1/200)
Vì 1/101<1/102<1/103<...<1/150 nên 1/101+1/102+...+1/150<1/150x50
1/151<1/152<1/153<...<1/200 nên 1/151+1/152+1/153+...+1/200<1/200x50
Từ 3 điều trên suy ra:
A<1/150x50+1/200x50
A<1/3+1/4
A<7/12
vậy A<7/12
❤~~~ HỌC TỐT~~~❤Đặng Khánh Duy
Chứng minh rằng:
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)
Help me!!!!!!!
Bạn tham khảo tại Câu hỏi của lê chí dũng - Chuyên mục hỏi đáp - Giúp tôi giải toán. - Học toán với OnlineMath
Chúc bạn học tốt!
Chứng minh rằng: \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+....+\frac{1}{200}< \frac{3}{4}\)
a) Chứng minh rằng:
1-\(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
b) Giải bài toán trên trong trường hợp tổng quát.
Chứng minh rằng :
\(\frac{1}{101}+\frac{1}{102}+....+\frac{1}{199}+\frac{1}{200}<1\)
Gọi A=1/101+...+1/200
=>A có số thừa số là (200-101):1+1=100 (thừa số)
=>1/101+...+1/200 <1/100+1/100+...+1/100 (100 ts 1/100)
=>1/101+...+1/200 <1(đpcm)
Chứng tỏ rằng : \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{200}=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{199}+\frac{1}{200}\)