Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
H24
Xem chi tiết
H24
5 tháng 6 2021 lúc 10:07

`A=sqrt{x-2}+sqrt{6-x}(2<=x<=6)`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>A>=sqrt{x-2+6-x}=2`
Dấu "=" `<=>x=2` hoặc `x=6`
Áp dụng BĐT bunhia
`=>A<=sqrt{2(x-2+6-x)}=2sqrt2`
Dấu "=" `<=>x=4`
`C=sqrt{1+x}+sqrt{8-x}(-1<=x<=8)`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>A>=sqrt{1+x+8-x}=3`
Dấu "=" `<=>x=-1` hoặc `x=8`
Áp dụng BĐT bunhia
`=>A<=sqrt{2(1+x+8-x)}=3sqrt2`
Dấu "=" `<=>x=7/2`

Bình luận (0)
H24
5 tháng 6 2021 lúc 10:09

`D=2sqrt{x+5}+sqrt{1-2x}(-5<=x<=1/2)`
`=sqrt{4x+20}+sqrt{1-2x}`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>D>=sqrt{4x+20+1-2x}=sqrt{2x+21}`
Mà `x>=-5`
`=>D>=sqrt{-10+21}=sqrt{11}`
Dấu "=" `<=>x=-5`

Bình luận (0)
HL
Xem chi tiết
KB
23 tháng 4 2022 lúc 18:25

\(a.A=\left(x-2\right)^2+\left(y+1\right)^2+1\ge1\forall x;y\) . " = " \(\Leftrightarrow x=2;y=-1\) 

b.\(B=7-\left(x+3\right)^2\le7\forall x\)  " = " \(\Leftrightarrow x=-3\)

c.\(C=\left|2x-3\right|-13\ge-13\forall x\)  " = " \(\Leftrightarrow x=\dfrac{3}{2}\)

d.\(D=11-\left|2x-13\right|\le11\forall x\)  " = " \(\Leftrightarrow x=\dfrac{13}{2}\)

Bình luận (1)
LP
Xem chi tiết
NM
21 tháng 9 2021 lúc 21:35

\(a,P=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)

Dấu \("="\Leftrightarrow x=1\)

\(b,Q=2x^2-6x=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}-\dfrac{9}{4}\right)=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)

Dấu \("="\Leftrightarrow x=\dfrac{3}{2}\)

\(c,M=\left(x^2-x+\dfrac{1}{4}\right)+\left(y^2+6y+9\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)

Bình luận (0)
NT
21 tháng 9 2021 lúc 21:58

a: Ta có: \(P=x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi x=1

Bình luận (0)
TB
Xem chi tiết
NT
9 tháng 7 2021 lúc 0:38

Bài 3: 

a) Ta có: \(A=25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)

d) Ta có: \(D=x^2-2x+2\)

\(=x^2-2x+1+1\)

\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)

Bình luận (0)
NT
9 tháng 7 2021 lúc 0:39

Bài 1: 

a) Ta có: \(A=x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi x=1

b) Ta có: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

Bình luận (0)
NX
Xem chi tiết
NT
15 tháng 7 2021 lúc 20:17

a, Ta có : \(A=4-\left|2x+5\right|\le4\)

Dấu ''='' xảy ra khi x = -5/2 

Vậy GTLN A là 4 khi x = -5/2 

b, Ta có : \(\left|x-1\right|+5\ge5\)

\(\Rightarrow\dfrac{1}{\left|x-1\right|+5}\le\dfrac{1}{5}\)

Dấu ''='' xảy ra khi x = 1 

Vậy GTLN B là 1/5 khi x = 1

c, \(C=4-\left|x-2\right|-\left|3y+6\right|\le4\)

Dấu ''='' xảy ra khi x = 2 ; y = -2 

Vậy GTLN C là 4 khi x = 2 ; y = -2

Bình luận (1)
TC
15 tháng 7 2021 lúc 20:17

undefined

Bình luận (0)
NT
15 tháng 7 2021 lúc 22:40

a) Ta có: \(\left|2x+5\right|\ge0\forall x\)

\(\Leftrightarrow4-\left|2x+5\right|\le4\forall x\)

Dấu '=' xảy ra khi \(=-\dfrac{5}{2}\)

b) Ta có: \(\left|x-1\right|+5\ge5\forall x\)

\(\Leftrightarrow\dfrac{2019}{\left|x-1\right|+5}\le\dfrac{2019}{5}\forall x\)

Dấu '=' xảy ra khi x=1

c) Ta có: \(-\left|x-2\right|\le0\forall x\)

\(-\left|3y+6\right|\le0\forall y\)

Do đó: \(-\left|x-2\right|-\left|3y+6\right|+4\le4\forall x,y\)

Dấu '=' xảy ra khi x=2 và y=-2

Bình luận (0)
HM
Xem chi tiết
NT
25 tháng 1 2023 lúc 8:24

a: -x^2<=0

=>-x^2+1<=1

=>A<=1

Dấu = xảy ra khi x=0

b: (x+1)^2>=0

=>-2(x+1)^2<=0

=>B<=8

Dấu = xảy ra khi x=-1

Bình luận (0)
HK
Xem chi tiết
NH
8 tháng 4 2023 lúc 18:52

A = \(\dfrac{2x-1}{x+2}\) 

a, A là phân số ⇔ \(x\) + 2  # 0  ⇒ \(x\) # -2

b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2 

                                          ⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2

                                         ⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2

                                         ⇒ 5 ⋮ \(x\) + 2

                            ⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}

                            ⇒  \(x\)   \(\in\) { -7; -3; -1; 3}

c, A = \(\dfrac{2x-1}{x+2}\) 

  A = 2 - \(\dfrac{5}{x+2}\)

Với \(x\) \(\in\) Z và \(x\) < -3 ta có

                     \(x\) + 2 < - 3 + 2 = -1

              ⇒  \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\)  = -5  ⇒ - \(\dfrac{5}{x+2}\)<  5

              ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)

Với \(x\)  > -3;  \(x\) # - 2; \(x\in\)  Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1

            \(\dfrac{5}{x+2}\) > 0  ⇒  - \(\dfrac{5}{x+2}\)  < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)

Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)

Kết hợp (1); (2) và(3)  ta có A(max) = 7 ⇔ \(x\) = -3

 

                     

             

                                   

     

 

            

Bình luận (0)
AT
Xem chi tiết
HN
11 tháng 7 2016 lúc 7:55

a) \(A=x-x^2=-\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Vậy Max A = \(\frac{1}{4}\Leftrightarrow x=\frac{1}{2}\)

b) \(B=2x-2x^2=2\left(x-x^2\right)=-2\left(x-\frac{1}{2}\right)^2+\frac{1}{2}\le\frac{1}{2}\)

Vậy Max B = \(\frac{1}{2}\Leftrightarrow x=\frac{1}{2}\)

Bình luận (0)
AT
11 tháng 7 2016 lúc 7:51

B= 2x - 2x^2 - 5​ nha

Bình luận (0)
LH
11 tháng 7 2016 lúc 7:53

a) \(x\le x^2\)

\(\Rightarrow x-x^2\le0\)

\(\Rightarrow A_{max}=0\)khi \(x=x^2\)

\(\Rightarrow x\left(x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

b) \(2x-2x^2=2\left(x-x^2\right)\)

Tương tự có \(2\left(x-x^2\right)\le0\)

\(B_{max}=0\)khi \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Bình luận (0)
TQ
Xem chi tiết
DT
1 tháng 7 2016 lúc 13:13

\(A=-\left(x^2-4x-3\right)=-\left(x^2-4x+4-7\right)=7-\left(x-2\right)^2\le7\Rightarrow A_{max}=7\Leftrightarrow x-2=0\Rightarrow x=2\)

Bình luận (0)
TL
1 tháng 7 2016 lúc 13:18

mk tra loi cau b con lai bn dua vao de giai nhé

b. x - x^2 = -(x^2 - x)

   = -[ (x^2 - 2.x.1/2 +(1/2)^2-(1/2)^2

   = -[(x-1/2)^2 - (1/2)^2]

   = -(x-1/2)^2 + 1/4 = 1/4 - (x-1/2)^2

Vì (x-1/2)^2 >=0 nên 1/4 - (x-1/2)^2 <=1/4 với mọi x

Do đó đa thức đã cho có gtln la 1/4 tại x = 1/2

( ý 2 là thêm bớt hạng tử nha)

Bình luận (0)
DT
1 tháng 7 2016 lúc 13:20

\(B=-\left(x^2-x\right)=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{1}{4}\right)=\frac{1}{4}-\left(x-\frac{1}{2}\right)^2\le\frac{1}{4}\Rightarrow B_{max}=\frac{1}{4}\Leftrightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)

Bình luận (0)