CMR: nếu a+b+c=2p thì b^2+c^2+2bc-a^2=4p(p-a)
cho a+b+c = 2p. CMR: 2bc+b2+c2-a2=4p(p-a)
a + b +c = 2P => b+ c = 2P -a
=> ( b +c )^2 =( 2P -a )^ 2 => b^2 +c^2 +2bc = 4P^2 - 4Pa + a^2
= 2bc + b^2 +c^2 - a^2 = 4P( P -a ) => ĐPCM
4p(p-a)=2p(2p-2a)=(a+b+c)(b+c-a)=-a^2+b^2+2bc+c^2=VT=>đpcm
Ta có: 2bc+b2+c2-a2=(b2+2bc+c2)-a2
=(b+c)2-a2 (1)
Mà: a+b+c=2p=> b+c=2p-a. Thay b+c=2p vào (1) ta có:
(2p-a)2-a2=4p2-4ap+a2-a2=4p2-4ap=4p.(p-a) (ĐPCM)
Cho a+b+c=2p
CMR : 2bc \(+b^2+c^2-a^2=4p\left(p-a\right)\)
cho a+b+c=2p. cmr :\(2bc+b^2+c^2-a^2=4p\left(p-a\right)\)
Xét \(VP=4p.\left(p-a\right)=2p.2.\left(p-a\right)=2p.\left(2p-2a\right)=\left(a+b+c\right)\left(b+c-a\right)\)
\(ab+ac-a^2+b^2+bc-ab+bc+c^2-ac=2bc+b^2+c^2-a^2=VT\)
Vậy ta có đpcm
2bc+b^2+c^2-a^2=(b+c)^2-a^2=(b+c-a)(b+c+a)=(2p-a-a)2p=(2p-2a)2p=2.2p(p-a)=4p(p-a)
2bc+b^2 +c^2 -a^2 =4p(p-a) với a+b+c =2p
\(2bc+b^2+c^2-a^2=4p\left(p-a\right)\)
Ta có:VT=\(\left(b+c\right)^2-a^2=\)\(\left(b+c-a\right)\left(a+b+c\right)=2p\left(2p-2a\right)\)
=\(4p\left(p-a\right)\)=VP
Vậy\(2bc+b^2+c^2-a^2=4p\left(p-a\right)\)(đpcm)
Cho \(a+b+c=2p\). Chứng minh rằng:
\(2bc+b^2+c^2-a^2=4p\left(p-a\right)\)
\(2bc+b^2+c^2-a^2\)
\(=\left(b+c\right)^2-a^2\)
\(=\left(b+c+a\right)\cdot\left(b+c-a\right)\)
\(=2p\cdot\left(2p-a-a\right)\)
\(=4p\left(p-a\right)\)
cho a + b +c =2p. c/m : 2bc + b^2 + c^2 -a^2 = 4p(p-a)
a+b +c = 2p
=> b +c = 2p - a
=> ( b + c)^2 = ( 2p -a)^2
=> b^2 + 2bc + c^2 = 4p^2 - 4ap + a^2
=> 2bc + b^2 + c^2 - a^2 = 4p^2 - 4ap
=> 2bc + b^2 + c^2 - a^2 = 4p ( p-a)
=> ĐPCM
( Xem lại đè = 4p(p - a) chứ không phải 4b( p-a)
Cho a+b+c=2p CMT 2bc + b^2? + c^2 - a^2 =2p(p-a) thấy mọi ng hay làm 4p(p-a) nhưng mik phải làm 2 p
CMR: \(2bc+b^2+c^2-a^2=4p\left(p-a\right)\) với \(a+b+c=2p\)
Vế phải = (b + c)2 - a2 = (b + c - a). (b +c + a) = (2p -a - a).2p = 2.(p -a).2p = 4p. (p- a) = Vế trái
vậy...
1. Cho a + b + c = 2p. CMR :
b2 + c2 - a2 + 2bc = 4p (p - a)
2. CMR nếu 2 số a, b nguyên thỏa mãn (5a + 2b) chia hết cho 17 thì (9a + 7b) cũng chia hết cho 17
Bài 1:
Ta có:
\(b^2+c^2-a^2+2bc=(b^2+2bc+c^2)-a^2\)
\(=(b+c)^2-a^2=(2p-a)^2-a^2\) (do \(a+b+c=2p\) )
\(=4p^2-4pa+a^2-a^2=4p^2-4pa=4p(p-a)\)
Do đó ta có đpcm.
Bài 2:
Dấu \(\Leftrightarrow \) thể hiện bài toán đúng trong cả 2 chiều.
Ta có: \(5a+2b\vdots 17\)
\(\Leftrightarrow 2(5a+2b)\vdots 17\)
\(\Leftrightarrow 10a+4b\vdots 17\)
\(\Leftrightarrow 10a+4b+17a+17b\vdots 17\)
\(\Leftrightarrow 27a+21b\vdots 17\)
\(\Leftrightarrow 3(9a+7b)\vdots 17\)
\(\Leftrightarrow 9a+7b\vdots 17\) (do 3 và 17 nguyên tố cùng nhau)
Ta có đpcm.