Những câu hỏi liên quan
NT
Xem chi tiết
BT
12 tháng 7 2016 lúc 17:04

\(9x^2+12x-4y^2-17=0\)

\(\Leftrightarrow\left(3x+2\right)^2-4y^2-21=0\)

\(\Leftrightarrow\left(3x+2y+2\right)\left(3x-2y+2\right)=21\)

Xét 

TH1:\(\hept{\begin{cases}3x+2y+2=1\\3x-2y+2=21\end{cases}\Leftrightarrow x=3;y=-5\left(thỏa\right)}\)

TH2:\(\hept{\begin{cases}3x+2y+2=21\\3x-2y+2=1\end{cases}\Leftrightarrow x=3;y=5\left(thỏa\right)}\)

TH3:\(\hept{\begin{cases}3x+2y+2=-1\\3x-2y+2=-21\end{cases}\Leftrightarrow x=\frac{-13}{3};y=5\left(k.thỏa\right)}\)

TH4:\(\hept{\begin{cases}3x+2y+2=-21\\3x-2y+2=-1\end{cases}\Leftrightarrow x=\frac{-13}{3};y=-5\left(k.thỏa\right)}\)

TH5:\(\hept{\begin{cases}3x+2y+2=3\\3x-2y+2=7\end{cases}\Leftrightarrow x=1;y=-1\left(thỏa\right)}\)

TH6:\(\hept{\begin{cases}3x+2y+2=7\\3x-2y+2=3\end{cases}\Leftrightarrow x=y=1\left(thỏa\right)}\)

TH7:\(\hept{\begin{cases}3x+2y+2=-3\\3x-2y+2=-7\end{cases}\Leftrightarrow x=\frac{-7}{3};y=1\left(k.thỏa\right)}\)

TH7:\(\hept{\begin{cases}3x+2y+2=-7\\3x-2y+2=-3\end{cases}\Leftrightarrow x=\frac{-7}{3};y=-1\left(k.thỏa\right)}\)

Vậy \(\left(a;b\right)=\left(3;5\right)=\left(3;-5\right)=\left(1;1\right)=\left(1;-1\right)\)

Bình luận (0)
TT
Xem chi tiết
BD
18 tháng 1 2017 lúc 10:04

Dịt cụ mày

Bình luận (0)
TT
18 tháng 1 2017 lúc 17:37

mày bị ngáo ak. đã xấu còn bị điên. đã bị điên cò học dốt

Bình luận (0)
H24
19 tháng 1 2017 lúc 0:07

y^2+7=z

\(\Leftrightarrow x^2+4z=17\left(x^4+z^2\right)\)Hiển nhiên \(VP\ge VT\) đẳng thức chỉ xẩy ra khi x=z=0

với z=0=> y^2+7=0 vô nghiệm

KL vô nghiệm nguyên

Bình luận (0)
PB
Xem chi tiết
CT
4 tháng 6 2017 lúc 11:59

Bình luận (0)
PB
Xem chi tiết
CT
17 tháng 2 2019 lúc 16:59

Bình luận (0)
H24
Xem chi tiết
NT
13 tháng 5 2022 lúc 22:44

a: 2x-3>3(x-2)

=>2x-3>3x-6

=>-x>-3

hay x<3

b: \(\dfrac{12x+1}{12}< =\dfrac{9x+1}{3}-\dfrac{8x+1}{4}\)

=>12x+1<=36x+4-24x-3

=>12x+1<=12x+1(luôn đúng)

Bình luận (0)
HN
Xem chi tiết
H24
3 tháng 3 2022 lúc 14:21

bn học Δ chx nhỉ

Bình luận (4)
NO
Xem chi tiết
NL
8 tháng 1 2024 lúc 21:30

\(\Leftrightarrow x^4-4x^3+12x^2-32x+32=\left(y-5\right)^2\)

\(\Leftrightarrow\left(x-2\right)^2\left(x^2+8\right)=\left(y-5\right)^2\)

- Với \(x=2\Rightarrow y=5\)

- Với \(x\ne2\Rightarrow x-2\) là ước của \(y-5\) 

Đặt \(y-5=n\left(x-2\right)\)

\(\Rightarrow\left(x-2\right)^2\left(x^2+8\right)=n^2\left(x-2\right)^2\)

\(\Rightarrow x^2+8=n^2\)

\(\Rightarrow\left(n-x\right)\left(n+x\right)=8\)

\(\Rightarrow\left[{}\begin{matrix}x=1;n=-3\Rightarrow y=8\\x=-1;n=-3\Rightarrow y=14\\x=1;n=3\Rightarrow y=2\\x=-1;n=3\Rightarrow y=-4\end{matrix}\right.\) 

Bình luận (0)
TP
Xem chi tiết
H24
11 tháng 3 2019 lúc 22:43

\(Pt\Leftrightarrow3x^2+12x+4y^2+3y+5=0\)

Coi pt trên là pt bậc 2 ẩn x 

Ta có : \(\Delta'=36-12y^2-9y-15\)

                 \(=-12y^2-9y+21\)

Pt có nghiệm \(\Leftrightarrow\Delta'=-12y^2-9y+21\ge0\)

                     \(\Leftrightarrow-\frac{7}{4}\le y\le1\)

Mà \(y\inℤ\Rightarrow y\in\left\{-1;0;1\right\}\)

Rồi làm nốt

Bình luận (0)
DH
Xem chi tiết
TT
18 tháng 9 2015 lúc 11:38

a) Điều kiện xác định \(16x+8\ge0\Leftrightarrow x\ge-\frac{1}{2}.\)

Theo bất đẳng thức Cô-Si cho 4 số ta được 

\(4\sqrt[4]{16x+8}=4\sqrt[4]{2\cdot2\cdot2\cdot\left(2x+1\right)}\le2+2+2+2x+1=2x+7\)

Do vậy mà \(4x^3+4x^2-5x+9\le2x+7\Leftrightarrow\left(2x-1\right)^2\left(x+2\right)\le0\).

Vì \(x\ge-\frac{1}{2}\to x+2>0\to\left(2x-1\right)^2\le0\to x=\frac{1}{2}.\) 

b. Ta viết phương trình dưới dạng sau đây  \(9x^4-21x^3+27x^2+16x+16=0\Leftrightarrow3x^2\left(3x^2-7x+7\right)+4\left(x+2\right)^2=0\)

Vì \(3x^2-7x+7=\frac{36x^2-2\cdot6x\cdot7+49+35}{12}=\frac{\left(6x-7\right)^2+35}{12}>0\) nên vế trái dương, suy ra phương trinh vô nghiệm.

Bình luận (0)