Tìm x, y ε Z biết:
( x - 2) x y= 3
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
tìm 3 số x,y,z biết (y+z+1)/x=(x+z+2)/y=(x+y-3)/z=1/(x+y+z)
a,Tìm x;y thuộc Z biết: x.y + 2x - y = 5
b,Tìm x;y;z biết : 2.x = 3.y; 4.y = 5.z và 4.x - 3.y + 5z=7
Giúp mk vs,mk duyệt hết lun!!!!!!!!!!!!
a)=>x(y+2)-(y+2)=3
=>(y+2)(x-1)=3
Vì x,y thuộc Z nên y+2 và x-1 thuộc Ư(3)={+1;+3;-1;-3}
Sau đó thay lần lượt các cặp -1 với -3 và 1 với 3
tìm x,y,z biết ( x-1/2 )( y+1/3 )( z-2 ) = 0 và x+2 = y+3 = z+4
\(\left(x-\frac{1}{2}\right)\left(y+\frac{1}{3}\right)\left(z-2\right)=0\) và \(x+2=y+3=z+4\)
\(\Rightarrow x-\frac{1}{2}=0\) hoặc \(y+\frac{1}{3}=0\) hoặc \(z-2=0\)
\(\Rightarrow x=\frac{1}{2}\) | \(y=-\frac{1}{3}\) | \(z=2\)
Khi \(x=\frac{1}{2}\) thì:
\(\frac{1}{2}+2=\frac{5}{2}\)
\(y=\frac{5}{2}-3=-\frac{1}{2}\)
\(z=\frac{5}{2}-4=\frac{-3}{2}\)
Khi \(y=\frac{-1}{3}\) thì:
\(\frac{-1}{3}+3=\frac{8}{3}\)
\(x=\frac{8}{3}-2=\frac{2}{3}\)
\(z=\frac{8}{3}-4=-\frac{4}{3}\)
Khi \(z=2\) thì:
\(2+4=6\)
\(x=6-2=4\)
\(y=6-3=3\)
Vậy (x,y,z) = \(\left(\frac{1}{2};-\frac{1}{2};-\frac{3}{2}\right)\) ; \(\left(\frac{2}{3};-\frac{1}{3};-\frac{4}{3}\right)\) ; \(\left(4;3;2\right)\)
tìm x,y,z biết :x^3/8=y^3/64=z^3/216 và x^2+y^2+z^2=224
Ta có :
\(\frac{x^3}{8}\)= \(\frac{y^3}{64}\)= \(\frac{z^3}{216}\) \(\Rightarrow\)\(\frac{x^3}{2^3}\)= \(\frac{y^3}{4^3}\)= \(\frac{z^3}{6^3}\)\(\Rightarrow\)\(\frac{x^2}{2^2}\)=\(\frac{y^2}{4^2}\)=\(\frac{z^2}{6^2}\)
và có : \(^{x^2+y^2+z^2=224}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{224}{56}=4\)
=> \(\frac{x^2}{4}=4\Rightarrow x^2=16\Rightarrow x\in4;-4\)
\(\frac{y^2}{16}=4\Rightarrow y^2=64\Rightarrow y\in8:-8\)
\(\frac{z^2}{36}=4\Rightarrow z^2=144\Rightarrow z\in12:-12\)
Vì \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)nên x,y,z cùng dấu
Vậy \(x,y,z\in\left(4;8;12\right);\left(-4;-8;-12\right)\)
Tìm các số nguyên a,v,c,d,e,biết tổng của chúng bằng 0 và a+b=c+d=d+e=2
Tìm các số nguyên x,y,z biết x+y+z=0;x+y=3;y+z=-1
tìm các số nguyên x biết x + y = 2 ; y + z =3 ; z + x = -5
ta có x + y = 2 suy ra x= 2 - y
z + x = -5 suy ra x= -5-z
suy ra x=2 -y = -5 -z=-5-z-2+y= -7 - z + y
thay x=-7 - z + y vào z + x = -5 ta được
z - 7 -z +y = - 5
-7 + y = -5
y=2
suy ra x= -2 , z=-3
tìm x,y,z biết x/2=y/3,y/4=z/5 và x-2y+3z=92
Vì x/2 = y/3 nên x/8=y/12 ( nhân hai vế với 1/4) (1)
Vì y /4 =z/5 nên y/12 = z/15 ( nhân hai vế với 1/3) (2)
Từ (1) và (2) suy ra x/8=y/12=z/15
Theo tính chất dãy tỉ số bằng nhau
x/8=y/12=z/15= (x-2y+3z)/(8-2.12+3.15) = 92/ 29
suy ra x = (92.8):29 ; y = (92.12): 29; z = (92. 15) :29
tìm x,y,z biết x/2=y/3,y/4=z/5 và x-2y+3z=92
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ (1) và (2) => \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\Rightarrow\frac{x}{8}=\frac{2y}{24}=\frac{3z}{45}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{2y}{24}=\frac{3z}{45}=\frac{x-2y+3z}{8-24+45}=\frac{92}{29}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{8}=\frac{92}{29}\\\frac{y}{12}=\frac{92}{29}\\\frac{z}{15}=\frac{92}{29}\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{736}{29}\\y=\frac{1104}{29}\\z=\frac{1380}{29}\end{cases}}}\)
ST hình như sai rồi 8+24+45=77 mà
tìm các số nguyên x biết x + y = 2 ; y + z =3 ; z + x = -5
Giải:
Ta có:
x + y = 2
y + z = 3
z + x = -5
\(\Rightarrow x+y+y+z+z+x=2+3+\left(-5\right)\)
\(\Rightarrow2x+2y+2x=0\)
\(\Rightarrow2\left(x+y+z\right)=0\)
\(\Rightarrow x+y+z=0\)
\(\Rightarrow x=0-3=-3\)
\(\Rightarrow y=0-\left(-5\right)=5\)
\(\Rightarrow z=0-2=-2\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(-3;5;-2\right)\)
ta có x + y = 2, y + z = 3, z + x = -5
=> x + y + y +z + z + x = 2 + 3 + -5
=> 2(x + y+ z) = 0
=>x + y + z = 0
mà x + y = 2 => z= -2
tương tự => x = -3 và y = 5