Tìm giá trị của biểu thức \(A=6x-3x^{24}+3x^{24}+17x^5-7\)với \(x^2-1=0\)
1, Biết x^2-3x+1=0.
Tính giá trị của biểu thức A=x^4+1/24.
2,a.Tìm gtnn của:
A=2x^2+6x-5.
b, Tìm gtln của:
B=(2x-x)(x+4).
Trả lời nhanh giúp mình với
2/
a, \(A=2x^2+6x-5=2\left(x^2+3x-\frac{5}{2}\right)=2\left(x^2+2x\cdot\frac{3}{2}+\frac{9}{4}-\frac{19}{4}\right)=2\left[\left(x+\frac{3}{2}\right)^2-\frac{19}{4}\right]=2\left(x+\frac{3}{2}\right)^2-\frac{19}{2}\)
Vì \(\left(x+\frac{3}{2}\right)^2\ge0\Rightarrow A=\left(x+\frac{3}{2}\right)^2-\frac{19}{2}\ge-\frac{19}{2}\)
Dấu "=" xảy ra khi x=-3/2
Vậy Amin=-19/2 khi x=-3/2
b,bài này phải tìm min
\(B=\left(2x-x\right)\left(x+4\right)=x\left(x+4\right)=x^2+4x=x^2+4x+4-4=\left(x+2\right)^2-4\)
Vì \(\left(x-2\right)^2\ge0\Rightarrow B=\left(x-2\right)^2+4\ge4\)
Dấu "=" xảy ra khi x = 2
Vậy Bmin=4 khi x=2
Bài 2)Ta có:
\(2x^2+6x-5\)
\(=2x^2+6x+\frac{9}{2}-\frac{19}{2}\)
\(=2\left(x^2+3x+\frac{9}{4}\right)-\frac{19}{2}\)
\(=2\left(x+\frac{3}{2}\right)^2-\frac{19}{2}\ge-\frac{19}{2}\)
\(A=6x-3x^{24}+3x^{24}+17x^5-7\). Tính A tại x = 1
a) Tìm TXĐ của biều thức. Với giá trị nào của x biểu thức vô nghĩa?
\(\dfrac{2-3x}{\dfrac{3x-2}{5}-\dfrac{x-4}{3}}\)
b) Tìm TXĐ của PT rồi giải PT:
\(\dfrac{3}{4x-20}\) + \(\dfrac{15}{50-2x^2}\) + \(\dfrac{7}{6x+30}\) = 0
a) Để biểu thức vô nghĩa thì \(\dfrac{3x-2}{5}-\dfrac{x-4}{3}=0\)
\(\Leftrightarrow\dfrac{3x-2}{5}=\dfrac{x-4}{3}\)
\(\Leftrightarrow3\left(3x-2\right)=5\left(x-4\right)\)
\(\Leftrightarrow9x-6=5x-20\)
\(\Leftrightarrow9x-5x=-20+6\)
\(\Leftrightarrow4x=-14\)
\(\Leftrightarrow x=-\dfrac{7}{2}\)
a) Tìm giá trị nhỏ nhất của biểu thức: A=x^2+3x-5
b) Chứng minh rằng A(x)=1/120x^5 -1/24 x^4+1/14x^3+1/24x^2-1/20x nhận giá trị nguyên với mọi giá trị nguyên của x
\(A=x^2+3x-5=x^2+3x+\frac{9}{4}-\frac{29}{4}\)
\(=\left(x+\frac{3}{2}\right)^2-\frac{29}{4}\ge-\frac{29}{4}\)
Vậy \(A_{min}=-\frac{29}{4}\Leftrightarrow x+\frac{3}{2}=0\Leftrightarrow x=-\frac{3}{2}\)
a) Tìm giá trị nhỏ nhất của biểu thức A = x2 + 3x - 5
b) Chứng minh rằng A(x) = 1/120 x5 - 1/24 x4 + 1/14 x3 + 1/24 x2 - 1/20 x nhận giá trị nguyên với mọi giá trị nguyên của x
Bài 1 : Cho biểu thức :
B = 15 - 3x - 3y
a) Tính giá trị của biểu thức tại : x + y - 5 = 0
b) Tìm x biết giá trị của biểu thức là 10 khi y = 2
Bài 2 : Tìm x biết :
a) 3x2 - 7 = 5
b) 3x - 2x2 = 0
c) 8x2 + 10x + 3 = 0
Bài 5 : Tìm giá trị của biểu thức A = x + y - 10 biết /1/ = 2 và /y/ = 1
bài 1 :
B=15-3x-3y
a) x+y-5=0
=>x+y=-5
B=15-3x-3y <=> B=15-3(x+y)
Thay x+y=-5 vào biểu thức B ta được :
B=15-3(-5)
B=15+15
B=30
Vậy giá trị của biểu thức B=15-3x-3y tại x+y+5=0 là 30
b)Theo đề bài ; ta có :
B=15-3x-3.2=10
15-3x-6=10
15-3x=16
3x=-1
\(x=\frac{-1}{3}\)
Bài 2:
a)3x2-7=5
3x2=12
x2=4
x=\(\pm2\)
b)3x-2x2=0
=> 3x=2x2
=>\(\frac{3x}{x^2}=2\)
=>\(\frac{x}{x^2}=\frac{2}{3}\)
=>\(\frac{1}{x}=\frac{2}{3}\)
=>\(3=2x\)
=>\(\frac{3}{2}=x\)
c) 8x2 + 10x + 3 = 0
=>\(8x^2-2x+12x-3=0\)
\(\Rightarrow\left(2x+3\right)\left(4x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+3=0\\4x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-3\\4x=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-3}{2}\\x=\frac{1}{4}\end{cases}}}\)
vậy \(x\in\left\{-\frac{3}{2};\frac{1}{4}\right\}\)
Bài 5 đề sai vì |1| không thể =2
giải phương trình:
a)5(x-1)+17x=1-4(3x+1)
b)x^2-6x+9=4x(x-3)
c)x^2-10x+24=0
a: =>5x-5+17x=1-12x-4
=>22x-5=-12x-3
=>34x=2
hay x=1/17
b: =>\(\left(x-3\right)^2-4x\left(x-3\right)=0\)
=>(x-3)(-3x-3)=0
=>x=3 hoặc x=-1
c: =>(x-4)(x-6)=0
=>x=4 hoặc x=6
cho x, y là các số thực thay đổi thỏa mãn x^2+y^2-24=6x+8y. Tìm giá trị lớn nhất của biểu thức P=3x+4y
Cho biểu thức \(M=\left(1-\frac{6-2x^3}{x^6-9}\right).\frac{4}{x^5+3x^2}:\left(\frac{6x^6-24}{x^9+6x^6+9x^3}:\left(\frac{3x^2}{2}+\frac{3}{x}\right)\right)\)
a/ Rút gọn M
b/ Tìm các giá trị nguyên của x để M đạt GTLN. Tìm GTLN đó