Cho hbh ABCD có tâm I(-1;3) và trọng tâm tam giác ABD là G(1/3;5/3). Viết phương trình các cạnh hbh ABCD biết các cạnh AB ,AD là 2 tiếp tuyến kẻ từ đỉnh A đến đường tròn tâm (C) : x2 + y2 - 6x - 6y +8 = 0
cho hbh mnpq có các đỉnh m,n,p,q lần lượt nằm trên các cạnh ab,bc,cd,da của hbh abcd cmr 2 hbh đó có cùng tâm o
Cho 2 hbh ABCD, ABEF có chung cạnh AB. Cấc cạnh CD, EF nằm ở 2 nửa mặt phẳng khác nhau bờ là đường thẳng AB
a) Cm FD//EC
b) Gọi O là tâm hbh ABCD, O' là tâm hbh ABEF
c/m OO' //FD
HELP
Cho 2 hbh ABCD và ABEF có chung cạnh AB. CD , EF nằm trong 2 nửa mặt phẳng khác nhau bờ là đg thẳng AB. CM:a. FD song song với EC. b. Gọi O là tâm hbh ABCD, O, là tâm hbh ABEF. Cm OO, somg song với FD
Cho hbh ABCD gọi M,N,P,Q lần lượt thuộc các cạnh AB,BC,CD,DA sao cho Am=CP, BN=DQ
Chứng minh rằng
a) MNPQ là hbh
b) 2 hbh ABCD và MNPQ có cùng tâm đường chéo
cho hbh ABCD , phân giác của góc A cắt DC tại I , cắt BC tại E .o là tâm đường tròn ngoại tiếp tam giác ICE.CMR:4 điểm B,D,C,O cùng thuộc 1 đường tròn
Trong mpOxy, cho HBH ABCD có phương trình đường chéo AC:x-y+1=0, điểm G(1;4) là trọng tâm tam giác ABC,điểm E(0;3) thuộc đường cao kẻ từ D của tam giác ACD.Tìm tọa độ các đỉnh HBH biết diện tích tứ giác AGCD bằng 32 và đỉnh A có tung độ dương.
bạn thử kiểm tra lại đề xem có fải sai đề k
Trong mp Oxy, Cho HBH ABCD có B(4;5) và G (0;\(\dfrac{-13}{3}\)) là trọng tâm tam giác ADc. Tìm tọa độ đỉnh D.
\(\overrightarrow{GB}=\left(4;\dfrac{28}{3}\right)\)
Gọi \(D\left(x;y\right)\) \(\Rightarrow\overrightarrow{DG}=\left(-x;-\dfrac{13}{3}-y\right)\)
Gọi O là tâm hbh \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{DG}=\dfrac{2}{3}\overrightarrow{DO}\\\overrightarrow{DO}=\overrightarrow{OB}\end{matrix}\right.\)
\(\Rightarrow\overrightarrow{DG}=\dfrac{1}{3}\overrightarrow{DB}=\dfrac{1}{2}\overrightarrow{GB}\)
\(\Rightarrow\left\{{}\begin{matrix}-x=\dfrac{1}{2}.4\\-\dfrac{13}{3}-y=\dfrac{1}{2}.\dfrac{28}{3}\end{matrix}\right.\) \(\Rightarrow D\left(-2;-9\right)\)
cho hbh abcd tâm O. Chứng minh rằng:
\(\overrightarrow{OA}\) + \(\overrightarrow{OB}\)+ \(\overrightarrow{OC}\) + \(\overrightarrow{OD}\)= \(\overrightarrow{0}\)
cho hình thoi ABCD,lấy ac làm cạnh dựng hbh ACEF cạnh thứ hai CE có độ dài bằng cạnh hình thoi.cmr b là trực tâm của tam giac def