Biểu diễn các số hữu tỉ \(\frac{-5}{6}\) và \(\frac{5}{3}\)trên cùng 1 trục số.
a) Các điểm A,B,C trong Hình 8 biểu diễn số hữu tỉ nào?
b) Biểu diễn các số hữu tỉ \(\frac{{ - 2}}{5};\,1\frac{1}{5};\,\frac{3}{5};\, - 0,8\) trên trục số.
a) Các điểm A,B,C trong Hình 8 biểu diễn lần lượt các số hữu tỉ: \(\frac{{ - 7}}{4};\,\frac{3}{4};\,\frac{5}{4}.\)
b) Ta có: \(1\frac{1}{5} = \frac{6}{5};\,\,\, - 0,8 = \frac{{ - 8}}{{10}} = \frac{{ - 4}}{5}.\)
Vậy ta biểu diễn các số hữu tỉ \(\frac{{ - 2}}{5};\,1\frac{1}{5};\,\frac{3}{5};\, - 0,8\) trên trục số như sau:
a) Các điểm M, N, P trong Hình 6 biểu diễn các số hữu tỉ nào?
b) Biểu diễn các số hữu tỉ sau trên trục số: \( - 0,75;\,\frac{1}{{ - 4}};\,1\frac{1}{4}.\)
a) Các điểm M, N, Q biểu diễn lần lượt các số hữu tỉ:\(\frac{5}{3};\,\frac{{ - 1}}{3};\,\frac{{ - 4}}{3}\).
b)
Điểm P biểu diễn: \(-\dfrac{4}{3}\)
Điểm N biểu diễn: \(-\dfrac{1}{3}\)
Điểm M biểu diễn: \(\dfrac{5}{3}\)
Biểu diễn các số hữu tỉ:\(\frac{3}{-4},\frac{5}{3}\)trên trục số
a) Trong các phân số sau, những phân số nào biểu diễn số hữu tỉ -0,625?
\(\frac{5}{{ - 8}};\frac{{10}}{{16}};\frac{{20}}{{ - 32}};\frac{{ - 10}}{{16}};\frac{{ - 25}}{{40}};\frac{{35}}{{ - 48}}.\)
b) Biểu diễn số hữu tỉ -0,625 trên trục số.
a) Ta có: \( - 0,625 = \frac{{ - 625}}{{1000}}= \frac{{ - 625:125}}{{1000:125}} = \frac{{ - 5}}{8}\)
\(\begin{array}{l}\frac{5}{{ - 8}} = \frac{{ - 5}}{8};\\\frac{{10}}{{16}} = \frac{{10:2}}{{16:2}} = \frac{5}{8};\\\frac{{20}}{{ - 32}} = \frac{{20:( - 4)}}{{( - 32):( - 4)}} = \frac{{ - 5}}{8};\\\frac{{ - 10}}{{16}} = \frac{{( - 10):2}}{{16:2}} = \frac{{ - 5}}{8};\\\frac{{ - 25}}{{40}} = \frac{{( - 25):5}}{{40:5}} = \frac{{ - 5}}{8};\\\frac{{35}}{{ - 48}}\end{array}\)
Vậy các phân số biểu diễn số hữu tỉ -0,625 là:
\(\frac{5}{{ - 8}};\frac{{20}}{{ - 32}};\frac{{ - 10}}{{16}};\frac{{ - 25}}{{40}}\)
b) Ta có: \( - 0,625 = \frac{{ -5}}{{8}}\) nên ta biểu diễn số hữu tỉ \(\frac{{ -5}}{{8}}\) trên trục số.
Chia đoạn thẳng đơn vị thành 8 phần bằng nhau, lấy một đoạn làm đơn vị mới, đơn vị mới bằng \(\frac{1}{8}\) đơn vị cũ.
Lấy một điểm nằm trước O và cách O một đoạn bằng 5 đơn vị mới. Điểm đó biểu diễn số hữu tỉ \(\frac{{ -5}}{{8}}\)
Nêu 3 cách của số hữu tỉ \(\frac{-3}{5}\)và biểu diễn số hữu tỉ đó trên trục số
cách 1: \(\frac{-3}{5}\)(cách viết dạng phân số)
cách 2: (-3) : 5 ( cách viết dạng phép chia)
cách 3: -0,6 ( cách viết dạng số thập phân)
Biểu diễn các số hữu tỉ \(\frac{3}{-4}\) và \(\frac{5}{3}\) trên trục số
nêu 3 cách viết của số hữu tỉ \(\frac{-3}{5}\) và biểu diễn số hữu tỉ đó trên trục số
-0,6; \(\frac{-6}{10}\); \(\frac{-9}{15}\)
Quan sát hai điểm biểu diễn các số hữu tỉ \(\frac{5}{4}\) và \(\frac{{ - 5}}{4}\) trên trục số sau:
Nêu nhận xét về khoảng cách từ hai điểm \(\frac{5}{4}\) và \(\frac{{ - 5}}{4}\) đến điểm 0.
Hai điểm biểu diễn các số hữu tỉ \(\frac{5}{4}\) và \(\frac{{ - 5}}{4}\) cách gốc 0 một khoảng bằng nhau.
Biểu diễn các số hữu tỉ sau trên trục số:
\(\frac{2}{5},\frac{-4}{5},\frac{7}{5},\frac{-6}{5}\)
giúp mk với mk đang cần bài này gấp