Hai điểm biểu diễn các số hữu tỉ \(\frac{5}{4}\) và \(\frac{{ - 5}}{4}\) cách gốc 0 một khoảng bằng nhau.
Hai điểm biểu diễn các số hữu tỉ \(\frac{5}{4}\) và \(\frac{{ - 5}}{4}\) cách gốc 0 một khoảng bằng nhau.
Giả sử hai điểm a, b lần lượt biểu diễn hai số nguyên a,b trên trục số nằm ngang. Với a < b, nêu nhận xét về vị trí của điểm a so với điểm b trên trục số đó.
Biểu diễn số hữu tỉ \(\frac{7}{{10}}\) trên trục số.
Quan sát trục số sau và cho biết các điểm A, B, C, D biểu diễn những số nào?
a) Sắp xếp các số sau theo thứ tự tăng dần: \(\frac{{ - 3}}{7};\,0,4;\, - 0,5;\,\frac{2}{7}\).
b) Sắp xếp các số sau theo thứ tự giảm dần: \(\frac{{ - 5}}{6};\, - 0,75;\, - 4,5;\, - 1\).
Biểu diễn số hữu tỉ -0,3 trên trục số.
Tìm số đối của mỗi số sau: \(\frac{9}{{25}};\,\frac{{ - 8}}{{27}};\, - \frac{{15}}{{31}};\frac{5}{{ - 6}};\,3,9;\, - 12,5\).
So sánh:
a)\(2,4\) và \(2\frac{3}{5}\);
b) \( - 0,12\) và \( - \frac{2}{5}\)
c)\(\frac{{ - 2}}{7}\) và \( - 0,3\).
So sánh:
a) \( - \frac{1}{3}\) và \(\frac{{ - 2}}{5}\)
b) 0,125 và 0,13
c) -0,6 và \(\frac{{ - 2}}{3}\)
Các số 21; -12; \(\frac{{ - 7}}{{ - 9}}\); -4,7; -3,05 có là số hữu tỉ không? Vì sao?