Tìm \(x\in Q\), biết:
\(\left(2x-15\right)^5=\left(2x-15\right)^3\)
Tìm x , biết :
\(a,\text{ }2^x\cdot4=128\)
\(b,\text{ }x^{15}=x\)
\(c,\text{ }\left(2x+1\right)^3=125\)
\(d,\text{ }\left(x-5\right)^4=\left(x-5\right)^6\)
\(e,\text{ }\left(2x-15\right)^5=\left(2x-15\right)^3\)
a) 2^x.2^4=128
=>2^x.2^2=2^7
=>2^x=2^7:2^2
=>2^x=2^5
=>x=5
b)x^15=x
=>x^15-x=0
=>x(x^16-x)=0
=>2 trượng hợp:x=0 và x^16-1=0(x^16-1=0 cx 2 th nha)
b),d),e) như nhau nha!
c) dễ rồi
\(a)2^x\cdot4=128\)
\(\Rightarrow2^x=\frac{128}{4}\)
\(\Rightarrow2^x=32\)
\(\Rightarrow2^x=2^5\)
\(\Rightarrow x=5\)
\(b)x^{15}=x\)
\(\Rightarrow x^{15}-x=0\)
\(\Rightarrow x(x^{14}-1)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x^{14}-1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=0\\x^{14}=1\end{cases}\Rightarrow}\hept{\begin{cases}x=0\\x=1\end{cases}}\)
\(c)(2x+1)^3=125\)
\(\Rightarrow(2x+1)^3=5^3\)
\(\Rightarrow2x+1=5\)
\(\Rightarrow2x=5-1\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=4:2=2\)
\(d)(x-5)^4=(x-5)^6\)
\(\Rightarrow(x-5)^6-(x-5)^4=0\)
\(\Rightarrow(x-5)^4\cdot\left[(x-5)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}(x-5)^4=0\\(x-5)^2-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=6\end{cases}}\)
\(e)(2x-15)^5=(2x-15)^3\)
\(\Rightarrow(2x-15)^5-(2x-15)^3=0\)
\(\Rightarrow(2x-15)^3-\left[(2x-15)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}(2x-15)^3=0\\(2x-15)^2-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=\varnothing\\x=8\end{cases}}\)
Chúc bạn hoc tốt :>
\(a.2^x.4=128\)
\(\Rightarrow2^x=32\)
\(\Rightarrow2^x=2^5\)
\(\Rightarrow x=5\)
\(b.x^{15}=x\)
\(\Rightarrow x^{15}-x=0\)
\(\Rightarrow x.\left(x^{14}-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^{14}=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
\(c.\left(2x+1\right)^3=125\)
\(\Rightarrow\left(2x+1\right)^3=5^3\)
\(\Rightarrow\left(2x+1\right)=5\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=\frac{4}{2}\)
\(\Rightarrow x=2\)
\(d.\left(x-5\right)^4=\left(x-5^6\right)\)
\(\Rightarrow\left(x-5\right)^6-\left(x-5\right)^4=0\)
\(\Rightarrow\left(x-5\right)^4.\left[\left(x-5\right)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-5\right)^4=0\\\left(x-5\right)^2-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
\(e.\left(2x-15\right)^5=\left(2x-15\right)^4\)
\(\Rightarrow\left(2x-15\right)^5-\left(2x-15\right)^4=0\)
\(\Rightarrow\left(2x-15\right)^3.\left[\left(2x-15\right)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(2x-15\right)^3=0\\\left(2x-15\right)^2-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=7,5\\x=8\end{cases}}\)
Tìm x
\(2x.\left(x-5\right)-x.\left(3+2x\right)=26\)
\(\left(x-7\right).\left(x-5\right)-12.\left(3x-7\right)=15\)
\(4.\left(18-5x\right)-12.\left(3x-7\right)=15.\left(2x-16\right)-6.\left(x+14\right)\)
\(\left(x-1\right).\left(x^2+x+1\right)=x^3-2x\)
Cho biểu thức:
A=\(\left(\frac{3}{x+5}-\frac{3x-15}{2x-15}.\left(\frac{2x-15}{x^2-25}-2x+15\right)\right):\left(1-x\right)\)
Tìm x để biểu thức A xác định
diều kiện xác định là các mẫu phải khác o; số chia cũng khác o nhé:
ĐK: +) \(x+5\ne0\Rightarrow x\ne-5\)
+) \(2x-15\ne0\Rightarrow x\ne\frac{15}{2}\)
+) \(x^2-25\ne0\Rightarrow\left(x+5\right)\left(x-5\right)\ne0\Rightarrow x\ne\pm5\)
+) \(1-x\ne0\Rightarrow x\ne1\)
Vậy điều kiện xác đinh của A là : \(x\ne1;x\ne\frac{15}{2};x\ne\pm5\)
Tìm x biết:
\(a,\)\(\left(2x+1\right)^3=125\)
\(b,\)\(\left(x-5\right)^4=\left(x-5\right)^6\)
\(c,\)\(\left(2x-15\right)^5=\left(2x-15\right)^3\)
{P/s: Nhờ mọi người ghi cả cách giải ra giúp em ạ, cảm ơn mọi người}
a) \(\left(2x+1\right)^3=125\)
\(\Rightarrow\left(2x+1\right)^3=5^3\)
\(\Rightarrow2x+1=5\)
\(\Rightarrow2x=5-1\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=4:2\)
\(\Rightarrow x=2\)
Vậy x = 2
b) \(\left(x-5\right)^4=\left(x-5\right)^6\)
\(\Rightarrow\left(x-5\right)^4-\left(x-5\right)^6=0\)
\(\Rightarrow\left(x-5\right)^4\left[1-\left(x-5\right)^2\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-5\right)^4=0\\1-\left(x-5\right)^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}\left(x-5\right)^4=0\\\left(x-5\right)^2=1\end{cases}}\)
TH 1 : \(\left(x-5\right)^4=0\Rightarrow x-5=0\Rightarrow x=5\)
TH 2 : \(\left(x-5\right)^2=1\Rightarrow\orbr{\begin{cases}x-5=1\\x-5=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=6\\x=4\end{cases}}\)
Vậy \(x\in\left\{5;6;4\right\}\)
c) \(\left(2x-15\right)^5=\left(2x-15\right)^3\)
\(\Rightarrow\left(2x-15\right)^5-\left(2x-15\right)^3=0\)
\(\Rightarrow\left(2x-15\right)^3\left[\left(2x-15\right)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(2x-15\right)^3=0\\\left(2x-15\right)^2-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}\left(2x-15\right)^3=0\\\left(2x-15\right)^2=1\end{cases}}\)
TH 1 : \(\left(2x-15\right)^3=0\Rightarrow2x-15=0\Rightarrow2x=15\Rightarrow x=\frac{15}{2}\)
TH 2 : \(\left(2x-15\right)^2=1\Rightarrow\orbr{\begin{cases}2x-15=1\\2x-15=-1\end{cases}}\Rightarrow\orbr{\begin{cases}2x=16\\2x=14\end{cases}}\Rightarrow\orbr{\begin{cases}x=8\\x=7\end{cases}}\)
Vậy \(x\in\left\{\frac{15}{2};8;7\right\}\)
_Chúc bạn học tốt_
Tìm \(x\), biết :
a) \(3x\left(12x-4\right)-9x\left(4x-3\right)=30\)
b) \(x\left(5-2x\right)+2x\left(x-1\right)=15\)
Bài giải:
a) 3x (12x - 4) - 9x (4x - 3) = 30
36x2 – 12x – 36x2 + 27x = 30
15x = 30
Vậy x = 2.
b) x (5 - 2x) + 2x (x - 1) = 15
5x – 2x2 + 2x2 – 2x = 15
3x = 15
x =5
a) 3x (12x - 4) - 9x (4x - 3) = 30
36x2 – 12x – 36x2 + 27x = 30
15x = 30
Vậy x = 2.
b) x (5 - 2x) + 2x (x - 1) = 15
5x – 2x2 + 2x2 – 2x = 15
3x = 15
x =5
a) 3x (12x - 4) - 9x (4x - 3) = 30
\(\Leftrightarrow\) 36x2 - 12x - 36x2 + 27x = 30
\(\Rightarrow\) 15x = 30
\(\Rightarrow\) x = 2
b) x (5 - 2x) + 2x (x - 1) = 15
\(\Leftrightarrow\) 5x - 2x2 + 2x2 - 2x = 15
\(\Rightarrow\) 3x = 15
\(\Rightarrow\) x = 5
Tìm x \(\in\)N biết:
a)\(x^{10}\)\(=\)\(1^x\)
b)\(x^{10}=x\)
c)\(\left(2x-15\right)^5=\left(2x-15\right)^3\)
a./ \(\Leftrightarrow x^{10}=1\Leftrightarrow x=\pm1\)
b./ \(\Leftrightarrow x^{10}-x=0\Leftrightarrow x\left(x^9-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^9=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
c./ \(\Leftrightarrow\left(2x-15\right)^5-\left(2x-15\right)^3=0\Leftrightarrow\left(2x-15\right)^3\left(\left(2x-15\right)^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}2x-15=0\\\left(2x-15\right)^2=1\end{cases}}\)
2x - 15 = 0 \(\Leftrightarrow x=\frac{15}{2}\)2x - 15 = 1 \(\Leftrightarrow x=\frac{16}{2}=8\)2x - 15 = -1 \(\Leftrightarrow x=\frac{14}{2}=7\)1^10=1^1
1^10=1
(2*8-15)^3=(2*8)^3
Ý c,x có thể bằng 7
Tìm x
a) \(\left(2x-1\right).\left(2x+1\right)-4x^2=3\)
b) \(5x.\left(x-3\right)^2-5.\left(x-1\right)^3+15.\left(x+2\right).\left(x-2\right)=5\)
a) \(\left(2x-1\right)\left(2x+1\right)-4x^2=3\Leftrightarrow\left(4x^2-1\right)-4x^2=3\Rightarrow-1=3\) (không đúng)
Tí làm tiếp nhé ;) h đi chơi đã
Tìm x : a) \(\left(2x-5\right)\left(x+2\right)-2x\left(x-1\right)=15\)
b)\(\left(5-2x\right)\left(2x+7\right)=4x^2-25\)
Ta có:
\(a)\left(2x-5\right)\left(x+2\right)-2x\left(x-1\right)=15\)
\(\Leftrightarrow\left(2x^2-x-10\right)-\left(2x^2-2x\right)=15\Leftrightarrow x-10=15\)
\(\Leftrightarrow x=25\)
\(b)\left(5-2x\right)\left(2x+7\right)=4x^2-25\)
\(\Leftrightarrow\left(5-2x\right)\left(2x+7\right)=\left(2x-5\right)\left(2x+5\right)\)
\(\Leftrightarrow\left(5-2x\right)\left(4x+12\right)=0\)
\(5-2x=0\Leftrightarrow x=\frac{5}{2}\)
\(4x+12=0\Leftrightarrow x=-3\)
Vậy ..........................................
tìm x thuộc n
\(\left(2x-15\right)^3=\left(2x-15\right)^5\)
giúp mik
\(\left(2x-15\right)^3=\left(2x-15\right)^5\\ \Rightarrow\left(2x-15\right)^2=1\\ \Rightarrow\left[{}\begin{matrix}2x-15=-1\\2x-15=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=7\\x=8\end{matrix}\right.\)
giúp mik ik mik tic cho và nhớ cho thêm cả hướng dẫn
(2x−15)\(^3\)=(2x−15)\(^5\)
suy ra :(2x−15)\(^2\)=1
suy ra :2x−15= -1 Hoặc 2x - 15 = 1
2x = -1+15 HoĂc 2x = 1+15
2x = 14 hoĂc 2x = 16
x= 14: 2 hoĂc x= 16:2
x= 7 hoĂc x= 8
KL : x=7; x=8