Cho : A= 31+32+33+...+32015
2A + 3 = 3n
Tìm n
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
choA=31+32+33+...32015.Tìm n biết 2A+3=3n
\(A=3+3^2+3^3+...+3^{2015}\)
\(\Rightarrow3A=3^2+3^3+...+3^{2015}+3^{2016}\)
\(\Rightarrow3A-A=\left(3^2+3^3+...+3^{2016}\right)-\left(3+3^2+3^3+...+3^{2015}\right)\)
\(\Rightarrow2A=\left(3^2-3^2\right)+\left(3^3-3^3\right)+...+\left(3^{2016}-3\right)\)
\(\Rightarrow2A=3^{2016}-3\)
\(\Rightarrow A=\dfrac{3^{2016}-3}{2}\)
Ta có: \(2A+3=3^n\)
\(\Rightarrow2\cdot\dfrac{3^{2016}-3}{2}+3=3^n\)
\(\Rightarrow3^{2016}-3+3=3^n\)
\(\Rightarrow3^{2016}=3^n\)
\(\Rightarrow n=2016\)
B= 31+ 32+ 33+ ……+ 3100
Tìm số tự nhiên n, biết 2B+3= 3n
B = 31 + 32 + 33 +...+ 3100
3B = 32 + 33 + ...+ 3100 + 3101
3B - B = 3101 - 3
2B = 3101 - 3
2B + 3 = 3n
⇒ 3101 - 3 + 3= 3n
3n = 3101
n = 101
Kết luận n = 101
Cho B = 31 + 32 + 33 + ...+ 3100 .
Tìm số tự nhiên n , biết rằng 2B + 3 = 3n
Giải giúp mình với nha các bạn , mình đang cần gấp á :))
\(B=3^1+3^2+3^3+...+3^{100}\\3B=3^2+3^3+3^4+...+3^{101}\\3B-B=(3^2+3^3+3^4+...+3^{101})-(3^1+3^2+3^3+...+3^{100})\\2B=3^{101}-3\\\Rightarrow 2B+3=3^{101}\)
Mặt khác: \(2B+3=3^n\)
\(\Rightarrow 3^n=3^{101}\\\Rightarrow n=101(tm)\)
Vậy n = 101.
cho A =3+32 +33+....+3100
Tìm số tự nhiên n , biết rằng 2A + 3 = 3n
A=3+32+33+...+3100
3A=32+33+...+3101
3A-A=(32+33+...+3101)-(3+32+33+...+3100)
2A=3101-3
2A+3=3101
\(A=3+3^2+3^3+...+3^{100}\)
\(\Rightarrow3A=3.\left(3+3^2+3^3+...+3^{100}\right)\)
\(\Rightarrow3A=3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow3A-A=2A=\left[3^2+3^3+3^4+...+3^{101}\right]-\left[3+3^2+3^3+...+3^{100}\right]\)\(\Rightarrow2A=3^{101}-3\)
Theo đề bài ta có 2A + 3 = 3n ( \(n\in N\) )
\(\Rightarrow2A+3=3^{101}-3+3=3^n\)
\(\Rightarrow2A+3=3^{101}=3^n\)
\(\Rightarrow3^{101}=3^n\)
\(\Rightarrow101=n\) ( thỏa mãn điều kiện \(n\in N\)
Vậy n = 101
Cho A = 3 + 3 2 + 3 3 + . . . + 3 100 . Tìm số tự nhiên n biết rằng 2A+3= 3 n
A. n=99
B. n=100
C. n=101
D. n=102
C bạn nhé n bằng 101
Cho: A = 3 + 3 2 + 3 3 + . . . + 3 100
Tìm số tự nhiên n biết rằng: 2A+3 = 3 n
Ta có: A = 3 + 3 2 + 3 3 + . . . + 3 100
=> 3 A = 3 2 + 3 3 + 3 4 + . . . + 3 101
=> 3 A - A = ( 3 2 + 3 3 + 3 4 + . . . + 3 101 ) - ( 3 + 3 2 + 3 3 + . . . + 3 100 )
=> 2 A = 3 2 + 3 3 + 3 4 + . . . + 3 101 - 3 - 3 2 - 3 3 - . . . - 3 100
2 A = 3 101 - 3 <=> 2 A + 3 = 3 101 , mà 2 A + 3 = 3 n
=> n = 101
Cho A = 3 + 32 + 33+ ... + 399.Tìm số tự nhiên n, biết rằng 2A + 3 = 3n
A=3+32+33+...+399
3A=32+33+...+3100
3A-A=(32+33+...+3100)-(3+32+33+...+399)
2A=3100-3
2A+3=3100
⇒n=100
Đây nè bạn, chúc bạn học tốt :))
A = 3 + 32 + 33+ ... + 399
3A = 3. (3 + 32 + 33+ ... + 399)
3A \(=3^2+3^3+3^4+...+3^{100}\)
3A \(=\left(3^2+3^3+3^4+...+3^{100}\right)-\left(3+3^2+3^3+...+3^{99}\right)\)
2A\(=3^{100}-3\)
Vậy, sau khi tìm đc 2A, ta tìm stn n nha:
2A + 3 = 3n
\(=3^{100}-3+3=3^n\)
⇒\(3^{100}=3^n\)(Vì -3 +3 = 0)
Vậy n = 100
cho B= 3+32+ 33+ ... + 3100 tìm số tự nhiên n biệt rằng 2B+3=3n
\(B=3+3^2+3^3+...+3^{100}\\3B=3^2+3^3+3^4+...+3^{101}\\3B-B=(3^2+3^3+3^4+...+3^{101})-(3+3^2+3^3+...+3^{100})\\2B=3^{101}-3\\\Rightarrow 2B+3=3^{101}\)
Mà: \(2B+3=3^n\)
\(\Rightarrow3^n=3^{101}\Rightarrow n=101\left(tm\right)\)
Vậy: n = 101.
bài 1 :
a) so sánh A và B biết : A =229 và B=539
b) B = 31+32+33+34+...+32010 chia hết cho 4 và 13
c) tính A = 1-3+32-33+34-...+398-399+3100
bài 2 tìm cái số nguyên n thỏa mãn
a) tìm các số nguyên n sao cho 7 ⋮ (n+1)
b) tìm các số nguyên n sao cho (2n + 5 ) ⋮ (n+1)
Bài 1:
a. $2^{29}< 5^{29}< 5^{39}$
$\Rightarrow A< B$
b.
$B=(3^1+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^{2009}+3^{2010})$
$=3(1+3)+3^3(1+3)+3^5(1+3)+...+3^{2009}(1+3)$
$=(1+3)(3+3^3+3^5+...+3^{2009})$
$=4(3+3^3+3^5+...+3^{2009})\vdots 4$
Mặt khác:
$B=(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2008}+3^{2009}+3^{2010})$
$=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2008}(1+3+3^2)$
$=(1+3+3^2)(3+3^4+....+3^{2008})=13(3+3^4+...+3^{2008})\vdots 13$
Bài 1:
c.
$A=1-3+3^2-3^3+3^4-...+3^{98}-3^{99}+3^{100}$
$3A=3-3^2+3^3-3^4+3^5-...+3^{99}-3^{100}+3^{101}$
$\Rightarrow A+3A=3^{101}+1$
$\Rightarrow 4A=3^{101}+1$
$\Rightarrow A=\frac{3^{101}+1}{4}$
Bài 2:
a. $7\vdots n+1$
$\Rightarrow n+1\in \left\{1; -1; 7; -7\right\}$
$\Rightarrow n\in \left\{0; -2; 6; -8\right\}$
b.
$2n+5\vdots n+1$
$\Rightarrow 2(n+1)+3\vdots n+1$
$\Rightarrow 3\vdots n+1$
$\Rightarrow n+1\in \left\{1; -1; 3; -3\right\}$
$\Rightarrow n\in \left\{0; -2; 2; -4\right\}$
1/3+2/32+3/33+4/34+...+n/3n<3/4 tìm n biết(n thuộc n*,n>3