Cho tam giác GEF vuông tại G, GH vuông góc với EF, Cho GH = 5, EH = HF. Tính GE
Cho tam giác EGF vuông tại E, đường cao EH, tỉ số \(\dfrac{ER}{EF}=\dfrac{6}{5}\), EH=30cm. Tính GH,HF
Áp dụng hệ thức lượng vào tam giác vuông EGH có đường cao EH
\(\dfrac{1}{EH^2}=\dfrac{1}{EG^2}+\dfrac{1}{EF^2}\)
\(\dfrac{1}{30^2}=\dfrac{1}{\left(\dfrac{6EF}{5}\right)^2}+\dfrac{1}{EF^2}\)
\(\Rightarrow EF=5\sqrt{61}\)\(\Rightarrow EG=\dfrac{6.5\sqrt{61}}{5}=6\sqrt{61}\)
Áp dụng định lí Pytago vào tam giác GEF vuông tại E
\(\Rightarrow GF=\sqrt{\left(5\sqrt{61}\right)^2+\left(6\sqrt{61}\right)^2}=61\)
Áp dụng định lí Pytago vào tam giác EHG vuông tại H
\(GH=\sqrt{\left(6\sqrt{61}\right)^2-30^2}=36\)
\(\Rightarrow HF=61-36=25\)
Cho tam giác DEF cân tại D, có DE=DF=5cm, góc D=80 độ. Kẻ DH vuông góc với EF(H thuộc EF)
a) Tính số đo góc E
b) Chứng minh EH=HF và góc EDH=góc FDH
c) Tính EF. biết DH=4cm
d) Kẻ HM vuông góc với DE; HN vuông góc với DF. Chứng minh tam giác DMN là tam giác cân tại D
*Vẽ hình dùm mik luôn với!?-
Cho hình thang cân EFGH ( EF//GH ), EF = 3cm, góc H = 60 độ và đường chéo EG vuông góc với cạnh bên EH tại E. Gọi M là trung điểm của GH và N là điểm đối xứng của E qua M.
a, Tính AC
b, Cm: HF là tia phân giác góc ADC
c, Cm: EFMH là hình bình hành
d, Tứ giác EHNG là hình gì? Chứng minh
Cho tam giác ABC có AB<AC. Trên cạnh AC lấy điểm D sao cho CD=AB. Gọi E,F,G,H theo thứ tự là trung điểm của BC,AC,AD và BD.
a) Chứng minh EF//GH và EF=GH
b) Chứng minh tứ giác EFGH là hình thoi
c) Tia phân giác của góc A cắt BC tại M. Chứng minh AM vuông góc HF
a: Xét ΔABC có
E là trung điểm của BC
F là trung điểm của CA
Do đó: EFlà đường trung bình
=>EF//AB và EF=AB/2(1)
Xét ΔABD có
H là trung điểm của DB
G la trung điểm của AD
Do đó: HG là đường trung bình
=>HG//AB và HG=AB/2(2)
Từ (1) và (2) suy ra HG//FE và HG=FE
b: HE=DC/2
EF=AB/2
mà AB=DC
nên HE=FE
Xét tứ giác EFGH có
EF//GH
EF=GH
Do đó: EFGH là hình bình hành
mà EH=EF
nên EFGH là hình thoi
Cho tam giác DEF vuông tại D có DF=20cm, DH vuông góc với EF tại H. Biết EH=9cm, HF=16cm. Tính DE và DH?
Giúp với. Cảm ơn
Giải:
Áp dụng định lý Py-ta-go vào tam giác HDF, ta có:
HF2 + DH2 = DF2
=> 162 + DH2 = 202
=> DH2 = 144 = 122
=> DH = 12 (cm)
Áp dụng định lý Py-ta-go vào tam giác DEH có:
DE2 = 92 + 122 = 225 = 152
=> DE = 15 (cm)
áp dụng định lý pitago vào tam giác DHF ta có:
HF2 + DH2 = DF2
hay 162+ DH2 = 202
suy ra : DH2= 144 =122
suy ra: DH = 12
áp dụng định lý pitago vào tam giác DEH ta có :
DE2 = 92+122= 225 = 152
suy ra : DE = 15
Tam giác DHF vuông tại H => FD2 = FH2 + HD2 ( Theo định lý pitago ) => DH2 = FD2 - FH2
=> DH2 - 202 - 162 = 400 - 256 = 144 = 122 => DH = 12 (cm)
Tam giác HDE vuông tại H => DE2 = DH2 + HE2 = 122 + 92 = 144 + 81 = 225 = 152
=> DE = 15 (cm)
Vậy DH = 12 cm; DE = 15 cm
Cho tam giác DEF có trung tuyến DM . Đường phân giác góc DME cắt DE tại G , đường phân giác góc DMF cắt DF tại H .
a)Chứng minh rằng: GE/GD = HF/HD
b) Xác định vị trí của GH và EF ?
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
Cho tam giác ABC cân tại A, vẽ AH vuông góc với BC tại H, kẻ EH vuông góc với AB, HF vuông góc với AC (E thuộc AB, F thuộc AC)
a) CM: tam giác AHB = tam giác AHC
b) Cho AH= 6cm, AC = 10cm. Tính HB,HC
c) CM: HE=HF
d) CM: EF song song với BC
e) CM: HA là tia phân giác của góc EHF
f) Gọi I là giao điểm của EF. Chứng minh: A,I,H thẳng hàng.
XÉT TAM GIÁC AHB VÀ TAM GIÁC AHC CÓ
AB=AC(GT)
AH CHUNG
GÓC AHB = GÓC AHC
=>TAM GIÁC AHB=TAM GIÁC AHC (CGC)
C,XÉT TAM GIÁC AHE VÀ TAM GIÁC AFH CÓ
AH CHUNG
GÓC AEH=GÓC AFH =90*
A1=A2
=>TAM GIÁC AHE=TAM GIÁC AFH (GCG)
=>HE=HF (CẠNH TƯƠNG ỨNG)
Cho tam giác EFG vuông tại F có FG=3cm,EG=4cm a) giải tam giác vuông EFG b) phân giác của góc E cắt FG tại H. Tính GF; GH C) từ H kẻ HM và HN lần lượt vuông góc với EF và EG . Tam giác EMNHN là hình gì ? Tính chu vi và diện tích củ tam giác . EMNHN các góc làm tròn đến phút cạch làm tròn đến chữ số thập phân thứ 3
Mn giúp em vs ạ ^^
c) Xét tứ giác FMHN có
\(\widehat{NFM}=90^0\)
\(\widehat{FNH}=90^0\)
\(\widehat{FMH}=90^0\)
Do đó: FMHN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
Hình chữ nhật FMHN có đường chéo FH là tia phân giác của \(\widehat{NFM}\)(gt)
nên FMHN là hình vuông(Dấu hiệu nhận biết hình vuông)