Những câu hỏi liên quan
TM
Xem chi tiết
TM
9 tháng 6 2016 lúc 15:41

|x-1/2|+3/4 nhé

 

Bình luận (0)
PK
9 tháng 6 2016 lúc 15:49

a) Tính M khi x - 1 là sao bạn ?

Bình luận (0)
TM
Xem chi tiết
DV
10 tháng 6 2016 lúc 8:19

a) (Nếu là tính M khi x = 1)

\(M=\left|1-\frac{1}{2}\right|+\frac{3}{4}=\left|\frac{1}{2}\right|+\frac{3}{4}=\frac{1}{2}+\frac{3}{4}=\frac{5}{4}\)

b) Ta có : \(\left|x-\frac{1}{2}\right|\ge0\)

=> \(\left|x-\frac{1}{2}\right|+\frac{3}{4}\ge\frac{3}{4}\)

GTNN của M là \(\frac{3}{4}\) <=> \(\left|x-\frac{1}{2}\right|=0\) <=> \(x=\frac{1}{2}\)

Bình luận (0)
PK
9 tháng 6 2016 lúc 15:49

a) Tính M khi x - 1 là sao bạn ?

Bình luận (0)
TM
10 tháng 6 2016 lúc 9:39

nhầm rồi bạn :P Tính M khi x=1

 

Bình luận (0)
PT
Xem chi tiết
NM
Xem chi tiết
NN
Xem chi tiết
HP
Xem chi tiết
H24
18 tháng 9 2017 lúc 16:21

khó vậy

Bình luận (0)
H24
18 tháng 9 2017 lúc 16:32

bai nay mk thay rat kho vi mk ko thay co 1 quy luat nao ca

Bình luận (0)
NH
Xem chi tiết
NA
Xem chi tiết
AH
29 tháng 5 2020 lúc 0:08

Bài 1:

Áp dụng BĐT Bunhiacopxky ta có:

\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)(x+y+z)\geq (1+1+1)^2\)

\(\Leftrightarrow A.1\geq 9\Leftrightarrow A\geq 9\)

Vậy GTNN của $A$ là $9$. Giá trị này đạt được tại $x=y=z=\frac{1}{3}$

Bình luận (0)
AH
29 tháng 5 2020 lúc 0:08

Bài 2:

Hoàn toàn tương tự bài 1

$S(a+b+c)\geq (1+1+1)^2$ theo BĐT Bunhiacopxky

$\Leftrightarrow S.3\geq 9\Rightarrow S\geq 3$

Vậy GTNN của $S$ là $3$ khi $a=b=c=1$

Bình luận (0)
AH
29 tháng 5 2020 lúc 0:11

Bài 3:

Áp dụng BĐT Bunhiacopxky như các bài trên ta có:

$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}$

Mà $0< x+y+z\leq 6$ nên $\frac{9}{x+y+z}\geq \frac{9}{6}=\frac{3}{2}$

Do đó $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{3}{2}$ (đpcm)

Dấu "=" xảy ra khi $x=y=z=2$

Bài 4:

Áp dụng BĐT Cô-si cho các số dương ta có:

$a^4+b^4+c^4+d^4\geq 4\sqrt[4]{a^4b^4c^4d^4}=4abcd$ (đpcm)

Dấu "=" xảy ra khi $a=b=c=d>0$

Bình luận (0)
H24
Xem chi tiết
LC
27 tháng 10 2015 lúc 13:09

\(M=x-\frac{1}{2}+\frac{3}{4}-x=\left(x-x\right)+\left(\frac{3}{4}-\frac{1}{2}\right)=\frac{1}{4}\)

Bình luận (0)