Những câu hỏi liên quan
QL
Xem chi tiết
HM
16 tháng 9 2023 lúc 21:48

a) Ta có:

\(\begin{array}{l}\frac{x}{3} = \frac{y}{4} \Rightarrow \frac{x}{3}.\frac{1}{5} = \frac{y}{4}.\frac{1}{5} \Rightarrow \frac{x}{{15}} = \frac{y}{{20}};\\\frac{y}{5} = \frac{z}{6} \Rightarrow \frac{y}{5}.\frac{1}{4} = \frac{z}{6}.\frac{1}{4} \Rightarrow \frac{y}{{20}} = \frac{z}{{24}}\end{array}\)

Vậy  \(\frac{x}{{15}} = \frac{y}{{20}} = \frac{z}{{24}}\) (đpcm)

b) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{{15}} = \frac{y}{{20}} = \frac{z}{{24}} = \frac{{x - y + z}}{{15 - 20 + 24}} = \frac{{ - 76}}{{19}} =  - 4\)

Vậy x = 15 . (-4) = -60; y = 20. (-4) = -80; z = 24 . (-4) = -96

Bình luận (0)
NT
Xem chi tiết
PQ
25 tháng 3 2018 lúc 10:53

Bài 1 : 

Ta có : 

\(A=\frac{\frac{3}{4}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{7}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}-\frac{5}{6}+\frac{5}{8}}\)

\(A=\frac{3\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}{5\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{2}\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}\right)}\)

\(A=\frac{3}{5}+\frac{1}{\frac{5}{2}}\)

\(A=\frac{3}{5}+\frac{2}{5}\)

\(A=1\)

\(b)\) Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

Đo đó : 

\(\frac{y+z-x}{x}=2\)\(\Rightarrow\)\(y+z=3x\)\(\left(1\right)\)

\(\frac{z+x-y}{y}=2\)\(\Rightarrow\)\(x+z=3y\)\(\left(2\right)\)

\(\frac{x+y-z}{z}=2\)\(\Rightarrow\)\(x+y=3z\)\(\left(3\right)\)

Lại có : \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\)

Thay (1), (2) và (3) vào \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\) ta được : 

\(B=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{8xyz}{xyz}=8\)

Vậy \(B=8\)

Chúc bạn học tốt ~ 

Bình luận (0)
DH
25 tháng 3 2018 lúc 11:08

bạn phùng minh quân câu 1 a tại sao lại rút gọn được \(\frac{3.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}{5\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}=\frac{3}{5}\) vậy nó không cùng nhân tử mà 

câu b \(\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{\left(y-y+y\right)+\left(-x+x+x\right)+\left(z+z-z\right)}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)sao lại ra bằng 2

(mình chỉ góp ý thôi nha tại mình làm thấy nó sai sai) 

Bình luận (0)
HH
25 tháng 3 2018 lúc 14:45

A=1

B=8

ĐÚNG K Z 

=)))))

Bình luận (0)
PH
Xem chi tiết
ND
Xem chi tiết
PL
21 tháng 12 2016 lúc 8:50

Theo đề bài ta có:

x/3=y/4=> x/15=y/20

x/5=z/6=> x/15= z/18

=> x/15=y/20=z/18 và x+y-z=3

Áp dụng ...........( tự làm nha)

 

Bình luận (1)
VN
Xem chi tiết
LM
Xem chi tiết
NT
27 tháng 1 2022 lúc 13:05

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{9}=\dfrac{x-3y+4z}{4-3\cdot3+4\cdot9}=\dfrac{62}{31}=2\)

Do đó: x=8; y=6; z=18

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta đc:

\(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=\dfrac{2x+5y-2z}{2\cdot7+5\cdot20-2\cdot32}=\dfrac{100}{50}=2\)

Do đó: x=14; y=40; z=64

c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=\dfrac{-15}{5}=-3\)

DO đó: x=-27; y=-21; z=-9

Bình luận (0)
Xem chi tiết
NT
23 tháng 7 2016 lúc 8:43

\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\)\(\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}\)

Áp dụng tính chất của dãy tủ số bằng nhau ta có:

\(\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)

\(\frac{x}{4}=2=>x=8\)

\(\frac{3y}{9}=2=>y=6\)

\(\frac{4z}{36}=2=>z=18\)

Bình luận (0)
DH
23 tháng 7 2016 lúc 8:39

Ta có: a) \(\hept{\begin{cases}\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\\x-3y+4x=62\end{cases}\Rightarrow\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2}\)

\(\Rightarrow\hept{\begin{cases}x=2.4=8\\y=2.3=6\\z=2.9=18\end{cases}}\)

Bình luận (0)
NV
23 tháng 7 2016 lúc 8:40

a) Ta có: x/4=y/3=z/9=x-3y+4z/4-9+36=62/31=2

 x/4=2 => x=2.4=8

 y/3=2 => y=2.3=6

 z/9=2 => z=2.9=18

Vậy x=8; y=6; z=18.

Bình luận (0)
NT
Xem chi tiết
HS
10 tháng 8 2019 lúc 20:39

a, 5x = 8y => \(\frac{x}{8}=\frac{y}{5}\)

8y = 20z => 2y = 5z => \(\frac{y}{5}=\frac{z}{2}\)

=> \(\frac{x}{8}=\frac{y}{5}=\frac{z}{2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{8}=\frac{y}{5}=\frac{z}{2}=\frac{x-y-z}{8-5-2}=\frac{3}{1}=3\)

=> x = 24,y = 15,z = 6

b, \(\frac{6}{11}x=\frac{9}{2}y\)=> \(\frac{12x}{22}=\frac{99y}{22}\)=> 12x = 99y => 4x = 33y => \(\frac{x}{33}=\frac{y}{4}\)

\(\frac{9}{2}y=\frac{18}{5}z\)=> \(\frac{45y}{10}=\frac{36z}{10}\)=> 45y = 36z => 5y = 4z => \(\frac{y}{4}=\frac{z}{5}\)

=> \(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{120}{-24}=-5\)

=> x = -165 , y = -20 , z = -25

c, Đặt : \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)=> x = 12k , y = 9k , z = 5k

=> xyz = 12k . 9k . 5k

=> xyz = 540k3

=> 540k3 =20

=> k3 = 20/540

=> k3 = 1/27

=> k = 1/3

Do đó : x= 4 , y = 3 , z = 5/3

Bình luận (0)
ES
Xem chi tiết
TL
2 tháng 10 2016 lúc 22:23

a) \(\frac{x}{y}=\frac{15}{7}\Leftrightarrow\)\(\frac{x}{15}=\frac{y}{17}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có:

\(\frac{x}{15}=\frac{y}{17}=\frac{x-2y}{15-2\cdot17}=\frac{16}{-19}\)

=> \(\begin{cases}x=-\frac{240}{19}\\y=-\frac{272}{19}\end{cases}\)

b) \(\frac{x}{y}=\frac{8}{11};\frac{z}{y}=\frac{3}{11}\)

\(\Leftrightarrow\)\(\frac{x}{8}=\frac{y}{11};\frac{z}{3}=\frac{y}{11}\)

\(\Leftrightarrow\)\(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có:

\(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}=\frac{x+y-z}{8+11-3}=\frac{80}{16}=5\)

\(\Rightarrow\begin{cases}x=40\\y=55\end{cases}\)

c) \(\frac{x}{4}=\frac{y}{3}\Rightarrow\)\(\frac{x}{8}=\frac{y}{6}\)

=> \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}\)

Đặt \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}=k\Rightarrow x=8k;y=6k;z=11k\)

Có \(xyz=-528\)

\(\Leftrightarrow8k\cdot6k\cdot11k=-528\)

\(\Leftrightarrow528\cdot k^3=-528\)

\(\Leftrightarrow k^3=-1\Leftrightarrow k=-1\)

Với k=-1 thì : x=-8;y=-6;x=-11

Bình luận (19)
ND
2 tháng 10 2016 lúc 22:24

a) Từ \(\frac{x}{y}=\frac{15}{7}\Rightarrow\frac{x}{15}=\frac{y}{7}\)

Áp dụng t/c dãy tỉ số bằng nhau,ta có:

\(\frac{x}{15}=\frac{y}{7}=\frac{x-2y}{15-14}=16\)

=> \(\begin{cases}x=240\\y=112\end{cases}\)

b) Từ \(\frac{x}{y}=\frac{8}{11}\Rightarrow\frac{x}{8}=\frac{y}{11}\)

\(\frac{z}{y}=\frac{3}{11}\Rightarrow\frac{z}{3}=\frac{y}{11}\)

=> \(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}=\frac{x+y-z}{8+11-3}=\frac{80}{16}=5\)

=> \(\begin{cases}x=40\\y=55\\z=15\end{cases}\)

c)Từ \(\frac{x}{4}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{6}\)

=> \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}\)

Đặt \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}\) = k

=> \(\begin{cases}x=8k\\y=6k\\z=11k\end{cases}\)

=> x.y.z = -528 => 8k.6k.11k = -528 => 528k3 = -528

=> k3 = -1 => k = -1

=> \(\begin{cases}x=-8\\y=-6\\z=-11\end{cases}\)

Bình luận (1)
ES
3 tháng 10 2016 lúc 12:29

À ! sorry mấy bn nha đề bài là tìm x,y, z nhưng mik ghi nhầm đề bài hum

Bình luận (1)