Cho biểu thức \(A=\frac{2006-x}{6-x}\).Tìm giá trị nguyên của x để A đạt GTLN
Cho biểu thức \(A=\frac{2006-x}{6-x}\)timf giá trị nguyên của x để A đạt GTLN . Tìm giá trị lớn nhất đó
Cho biểu thức \(A=\frac{2006-x}{6-x}\).Tìm giá trị nguyên của x để A đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó .
\(A=\frac{2006-x}{6-x}=1+\frac{2000}{6-x}\)
Để \(1+\frac{2000}{6-x}\) đạt GTLN <=> \(\frac{2000}{6-x}\) đạt GTLN
Mà x nguyên => 6 - x là số nguyên dương nhỏ nhất Tức là 6 - x = 1 => x = 5
Vậy GTNN của A là \(\frac{2006-5}{6-5}=2001\) tại x = 5
x=5;A=2001
tự tìm hiểu cách giải nha.Tiện thể tôi không phải là uzumaki naruto đâu
Cho biểu thức \(A=\frac{2006-x}{6-x}\). Tìm giá trị nguyên của x để A đạt giá trị lớn nhất . Tìm giá trị lớn nhất đó
\(A=\frac{2006-x}{6-x}=1\frac{2000}{6-x}\)
=> để A đạt gia trị lớn nhất thì 6-x phải đạt giá trị nhỏ nhất (>0) và x khác 6
A lớn nhất khi 6-x nên => 6-x=1
=> x=5
giá trị lớn nhất của A khi đó là:
A=(2006-5)/(6-5)=2001
Cho biểu thức \(A=\frac{2006-x}{6-x}\) . Tìm giá trị nguyên của x để A đạt giá trị lớn nhất . Tìm giá trị lớn nhất đó
\(A=\frac{6-x+2000}{6-x}=1+\frac{2000}{6-x}\)
A đạt GTLN ⇔\(\frac{2000}{6-x}\)đạt GTLN
\(\frac{2000}{6-x}\)đạt GTLN ⇔6−x đạt GTNN
Ta có 6−x≥1
Dấu = xảy ra ⇔x=5⇔x=5
Do đó GTLN của A \(=1+\frac{2000}{1}=2000+1=2001\)
Vậy GTLN của A là 2001 ⇔x=5
Cho biểu thức \(A=\frac{2006-x}{6-x}\) . Tìm giá trị nguyên của x để A đạt giá trị lớn nhất . Tìm giá trị lớn nhất đó
\(A=\frac{2000+6-x}{6-x}=1+\frac{2000}{6-x}\)
A đạt GTLN \(\Leftrightarrow\frac{2000}{6-x}\)đạt GTLN
\(\frac{2000}{6-x}\)đạt GTLN \(\Leftrightarrow6-x\) đạt GTNN
Ta có \(6-x\ge1\)
Dấu = xảy ra \(\Leftrightarrow x=5\)
Do đó GTLN của A \(=1+\frac{2000}{1}=2001\)
Vậy GTLN của A là 2001 \(\Leftrightarrow x=5\)
Cho biểu thức A = \(\frac{2012-x}{6-x}\). Tìm giá trị nguyên của x để A đạt GTLN. Tìm giá trị đó
1) Cho biểu thức A=2006-x/6-x. tìm giá trị nguyên của x để A đạt giá trị lớn nhất. tìm giá trị lớn nhất đó.
2) tìm giá trị nhỏ nhất của biểu thức: P=4-x/14-x;(x thuộc Z). khi đó x nhận giá trị nguyên nào ?
tach 14-x = 10-4-x roi sau do chac ban cung phai tu biet lam
A=\(\frac{2006-x}{6-x}\)
Tìm giá trị nguyên của x đề A đạt GTLN. Tìm giá trị lớn nhất đó
\(A=\frac{2006-x}{6-x}=\frac{2000+6-x}{6-x}=\frac{2000}{6-x}+1\)
vì A lớn nhất=>\(\frac{2000}{6-x}\)lớn nhất
=>6-x nhỏ nhất
=>6-x=1
=>x=5
vậy MinA=\(\frac{2006-5}{6-5}=\frac{2001}{1}=2001\)khi x=5
hình như bạn đấy sai MinA\(\Rightarrow\)MaxA
Bài 1:Tìm giá trị nguyên của x để biểu thức A = \(\frac{4x-3}{2x+1}\)có giá trị là số nguyên
Bài 2: Tìm giá trị nguyên của x để biểu thức A = \(\frac{3}{4-x}\)đạt giá trị lớn nhất.Tìm GTLN đó
Bài 3: Tìm giá trị nguyên x để biểu thức B = \(\frac{7-x}{4-x}\)Đạt GTLN.Tìm GTLN đó
lưu ý các bn nào giải đc bài nào thì viết ra ko nhất thiết là phải cả 3 bài nhưng nếu làm cả 3 bài mk tick cho 3 cái(dùng nick phụ tick nữa)
Để A đạt GTLN thì \(\frac{3}{4-x}\)phải đạt giá trị lớn nhất\(\Rightarrow\)4-x phải bé nhất và 4-x>0
\(\Rightarrow4-x=1\rightarrow x=3\)
thay vào ta đc A=3
B3
\(B=\frac{7-x}{4-x}=\frac{4-x+3}{4-x}=\frac{4-x}{4-x}+\frac{3}{4-x}\)\(=1+\frac{3}{4-x}\)
Để b đạt GTLn thì 3/4-x phải lớn nhất (làm tương tụ như bài 2 )
Vậy gtln của 3/4-x là 3 thay vào ta đc b=4
Lâm như bài 2 Gtln của\(\frac{3}{4-x}\)
B1\(\frac{4x-3}{2x+1}=\frac{4x+2-5}{2x+1}=\frac{2.\left(2x+1\right)-5}{2x+1}\)\(=\frac{2.\left(2x+1\right)}{2x+1}-\frac{5}{2x+1}=2-\frac{5}{2x+1}\)
VÌ A\(\varepsilon Z\),2\(\varepsilon Z\)\(\Rightarrow\)\(\frac{5}{2x+1}\varepsilon Z\)\(\rightarrow2x+1\varepsilonƯ\left(5\right)\)={1;-1;5;-5}
\(\Rightarrow\)x={0;-1;23}