Những câu hỏi liên quan
HM
Xem chi tiết
NN
11 tháng 5 2016 lúc 10:04

\(M=\frac{\left(a^{\frac{1}{3}}+b^{\frac{1}{3}}\right)^2}{\sqrt[3]{ab}}:\left(2+\sqrt[3]{\frac{a}{b}}+\sqrt[3]{\frac{b}{a}}\right)=\frac{\left(a^{\frac{1}{3}}+b^{\frac{1}{3}}\right)^2}{\sqrt[3]{ab}}:\frac{2\sqrt[3]{ab}+\left(\sqrt[3]{a}\right)^2+\left(\sqrt[3]{a}\right)^2}{\sqrt[3]{ab}}\)

    \(=\frac{\left(\sqrt[3]{a}+\sqrt[3]{b}\right)^2}{\sqrt[3]{ab}}-\frac{\sqrt[3]{ab}}{\left(\sqrt[3]{a}+\sqrt[3]{b}\right)^2}=1\)

Bình luận (0)
DT
Xem chi tiết
NQ
10 tháng 5 2016 lúc 16:20

\(T=\left(\sqrt[7]{\frac{a}{b}\sqrt[5]{\frac{b}{a}}}\right)^{\frac{35}{4}}=\left\{\left[\left(\frac{b}{a}\right)^{-1}\left(\frac{b}{a}\right)^{\frac{1}{5}}\right]^{\frac{1}{7}}\right\}^{\frac{35}{4}}=\left[\left(\frac{b}{a}\right)^{-\frac{4}{5}}\right]=\frac{a}{b}\)

Bình luận (0)
DT
10 tháng 5 2016 lúc 16:22

\(T=\left(\sqrt[7]{\frac{a}{b}\sqrt[5]{\frac{b}{a}}}\right)^{\frac{35}{4}}=\sqrt[4]{\left(\sqrt[7]{\frac{a}{b}\sqrt[5]{\frac{b}{a}}}\right)^{35}}=\sqrt[4]{\left(\frac{a}{b}\sqrt[5]{\frac{b}{a}}\right)^5}\)

\(=\sqrt[4]{\left(\frac{a}{b}\right)^5.\frac{b}{a}}=\sqrt[4]{\left(\frac{a}{b}\right)^4}=\frac{a}{b}\)

Bình luận (0)
NL
Xem chi tiết
NT
14 tháng 5 2016 lúc 8:31

Ta có :

\(\log_62-\frac{1}{2}\log_{\sqrt{6}}5=\log_62-\log_65=\log_6\frac{2}{5}\)

\(\Rightarrow\left(\frac{1}{6}\right)^{\log_62-\frac{1}{2}\log_{\sqrt{6}}5}=\left(\frac{1}{6}\right)^{\log_6\frac{2}{5}}=\left(6^{-1}\right)^{\log_6\frac{2}{5}}=6^{\log_6\frac{2}{5}}=\frac{5}{2}=\sqrt[3]{\left(\frac{5}{2}\right)^3}=\sqrt[3]{\frac{125}{8}}\)

Mà :

\(\sqrt[3]{\frac{125}{8}}>\sqrt[3]{\frac{124}{8}}\Rightarrow\left(\frac{1}{6}\right)^{\log_62-\frac{1}{2}\log_{\sqrt{6}}5}>\sqrt[3]{\frac{31}{2}}\)

\(\Rightarrow B=\left(\frac{1}{6}\right)^{\log_62-\frac{1}{2}\log_{\sqrt{6}}5}-\sqrt[3]{\frac{31}{2}}>0^{ }\)

Bình luận (0)
CN
Xem chi tiết
AN
12 tháng 6 2017 lúc 9:13

B xem lại đề bài thử nhé

Bình luận (0)
CN
12 tháng 6 2017 lúc 14:31

bài này mình cũng dò lại đề rồi mình chép đúng đấy mà không làm được nên mới nhờ giải

Bình luận (0)
AN
12 tháng 6 2017 lúc 14:43

Cố gắng hơn nữa bạn cho mình biết là cái đề này bạn chép từ bộ đề nào để mình lên mạng tìm thử xem sao. Biết đâu cái đề bạn cầm trên tay nó bị lỗi đánh máy thì sao.

Bình luận (0)
HM
Xem chi tiết
NV
Xem chi tiết
BH
10 tháng 5 2016 lúc 16:57

\(F=\left(1-2\sqrt{\frac{a}{b}}+\frac{a}{b}\right):\left(a^{\frac{1}{2}}-b^{\frac{1}{2}}\right)^2=\left(1-\sqrt{\frac{a}{b}}\right)^2:\left(\sqrt{a}-\sqrt{b}\right)^2\)

                                                        \(=\frac{\left(\sqrt{b}-\sqrt{a}\right)^2}{b}.\frac{1}{\left(\sqrt{a}-\sqrt{b}\right)^2}=\frac{1}{b}\)

Bình luận (0)
DT
10 tháng 5 2016 lúc 17:07

ĐK: \(ab\ge0;b\ne0\)

\(F=\left(1-2\sqrt{\frac{a}{b}}+\frac{a}{b}\right):\left(a^{\frac{1}{2}}-b^{\frac{1}{2}}\right)^2\)

\(=\left(\sqrt{\frac{a}{b}}-1\right)^2:\left(\sqrt{a}-\sqrt{b}\right)^2=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{b}.\frac{1}{\left(\sqrt{a}-\sqrt{b}\right)^2}=\frac{1}{b}\)

Bình luận (0)
NH
Xem chi tiết
DN
12 tháng 5 2016 lúc 8:11

Ta có \(a=\log_{\sqrt{2}}\left(\frac{1}{\sqrt[3]{5}}\right)=\log_{2^{\frac{1}{2}}}5^{-\frac{1}{3}}=-\frac{2}{3}\log_25\)

\(\Rightarrow\log_25=-\frac{3a}{2}\)

\(\Rightarrow C=\log40=\frac{\log_240}{\log_210}=\frac{\log_2\left(2^3.5\right)}{\log_2\left(2.5\right)}=\frac{3+\log_25}{1+\log_25}=\frac{6-3a}{2-3a}\)

Bình luận (0)
HT
Xem chi tiết
DQ
11 tháng 5 2016 lúc 15:37

\(A=\log_a\left(a^2\sqrt[4]{a^3\sqrt[5]{a}}\right)=\log_a\left(a^2\sqrt[4]{a^3.a^{\frac{1}{5}}}\right)=\log_a\left[a^2\left(a^{\frac{16}{5}}\right)^{\frac{1}{4}}\right]=\log_a\left(a^2.a^{\frac{4}{5}}\right)=\frac{14}{5}\)

Bình luận (0)
HM
Xem chi tiết
NN
11 tháng 5 2016 lúc 10:16

\(=\left(\sqrt{a}-\sqrt{b}\right)^2:\left(\sqrt{b}-\frac{b}{\sqrt{a}}\right)^2=\left(\sqrt{a}-\sqrt{b}\right)^2:\left[\frac{\sqrt{b}}{\sqrt{a}}\left(\sqrt{a}-\sqrt{b}\right)\right]^2\)

\(=\left(\sqrt{a}-\sqrt{b}\right)^2:\left[\frac{\sqrt{b}}{\sqrt{a}}\left(\sqrt{a}-\sqrt{b}\right)\right]^2\)

 \(=\left(\sqrt{a}-\sqrt{b}\right)^2.\frac{a}{b\left(\sqrt{a}-\sqrt{b}\right)^2}=\frac{a}{b}\)

Bình luận (0)