Những câu hỏi liên quan
LM
Xem chi tiết
NT
7 tháng 1 2022 lúc 9:55

a: Vì n+1 và n+2 là hai số tự nhiên liên tiếp

nên UCLN(n+1,n+2)=1

hay A là phân số tối giản

b: Gọi a là UCLN(n+4;2n+9)

\(\Leftrightarrow\left\{{}\begin{matrix}2n+9⋮a\\2n+8⋮a\end{matrix}\right.\Leftrightarrow1⋮a\Leftrightarrow a=1\)

Vậy: B là phân số tối giản

c: Gọi b là UCLN(12n+1;30n+2)

\(\Leftrightarrow\left\{{}\begin{matrix}60n+5⋮b\\60n+4⋮b\end{matrix}\right.\Leftrightarrow1⋮b\Leftrightarrow b=1\)

Vậy: C là phân số tối giản

Bình luận (1)
H24
Xem chi tiết
NN
7 tháng 5 2019 lúc 13:21
 

a)

Gọi d là Ư CLN (12n+1 ; 30n+2)

12n+1  d và 30n+2 d

(5*12)n+5 d và (2*30)n+4 d

60n+5 d và 60n+4 d

 Suy ra: (60n+5 - 60n+4) d

                     1              d

d=1     ƯCLN(12n+1;30n+2)=d=1          đpcm

b) 

Gọi ƯCLN(14n+17;21n+25) là d

14n+17d và 21n+25d

 3·14n+3·17d và 2·21n+2·25d

42n+51d và 42n+50d

(42n+51 - 42n+50) d

d

d=1   

Vậy ƯCLN(14n+17;21n+25)=d=1

đpcm

 
Bình luận (0)
EC
7 tháng 5 2019 lúc 13:22

a Ta có : A là p/số tối giản <=> ƯCLN(12n + 1; 30n + 2) \(\in\){1; -1}

Gọi d là ƯCLN(12n + 1; 30n + 2)

=> 12n + 1 \(⋮\)d      => 5(12n + 1) \(⋮\)d     => \(60n+5⋮d\)

    30n + 2 \(⋮\)d       => 2(30n + 2) \(⋮\)d     => \(60n+4⋮d\)

=> (60n + 5) - (60n + 4) = 1  \(⋮\)\(\in\){1; -1}

Vậy A là p/số tối giản

Bình luận (0)
H24
Xem chi tiết
PL
19 tháng 6 2021 lúc 20:43

Lâu rồi mk ko làm nên ko bt đúng ko, ý B để mk xem xét đã nha

undefined

Bình luận (8)

Giải:

a) \(A=\dfrac{12n+1}{30n+2}\) 

Gọi \(ƯCLN\left(12n+1;30n+2\right)=d\) 

\(\Rightarrow\left\{{}\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\)     \(\Rightarrow\left\{{}\begin{matrix}5.\left(12n+1\right)⋮d\\2.\left(30n+2\right)⋮d\end{matrix}\right.\)    \(\Rightarrow\left\{{}\begin{matrix}60n+5⋮d\\60n+4⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(A=\dfrac{12n+1}{30n+2}\) là p/s tối giản

b) \(B=\dfrac{14n+17}{21n+25}\) 

\(\Rightarrow\left\{{}\begin{matrix}14n+17⋮d\\21n+25⋮d\end{matrix}\right.\)    \(\Rightarrow\left\{{}\begin{matrix}3.\left(14n+17\right)⋮d\\2.\left(21n+25\right)⋮d\end{matrix}\right.\)   \(\Rightarrow\left\{{}\begin{matrix}42n+51⋮d\\42n+50⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(42n+51\right)-\left(42n+50\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(B=\dfrac{14n+17}{21n+25}\) là p/s tối giản

Chúc bạn học tốt!

Bình luận (0)
HL
Xem chi tiết
NT
8 tháng 4 2022 lúc 20:13

a: Gọi d=UCLN(4n+8;2n+3)

\(\Leftrightarrow4n+8-4n-6⋮d\)

\(\Leftrightarrow2⋮d\)

mà 2n+3 là số lẻ

nên d=1

=>ĐPCM

b: Gọi a=UCLN(7n+4;9n+5)

\(\Leftrightarrow63n+36-63n-35⋮a\)

=>a=1

=>ĐPCM

Bình luận (2)
H24
Xem chi tiết

Giải:

a) \(A=\dfrac{12n+1}{30n+2}\) 

Gọi \(ƯCLN\left(12n+1;30n+2\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\)      \(\Rightarrow\left[{}\begin{matrix}5.\left(12n+1\right)⋮d\\2.\left(30n+2\right)⋮d\end{matrix}\right.\)        \(\Rightarrow\left[{}\begin{matrix}60n+5⋮d\\60n+4⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(A=\dfrac{12n+1}{30n+2}\) là p/s tối giản

b) \(B=\dfrac{14n+17}{21n+25}\) 

Gọi \(ƯCLN\left(14n+17;21n+25\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}14n+17⋮d\\21n+25⋮d\end{matrix}\right.\)    \(\Rightarrow\left[{}\begin{matrix}3.\left(14n+17\right)⋮d\\2.\left(21n+25\right)⋮d\end{matrix}\right.\)    \(\Rightarrow\left[{}\begin{matrix}42n+51⋮d\\42n+50⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(42n+51\right)-\left(42n+50\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(B=\dfrac{14n+17}{21n+25}\) là p/s tối giản

Chúc bạn học tốt!

Bình luận (0)
Xem chi tiết
BH
Xem chi tiết
LN
3 tháng 5 2015 lúc 14:36

b. Gọi d là ƯCLN của 14n+17 và 21n+25

Ta có: * 14n+17 chia hết cho d

=> 3 (14n+17) chia hết cho d

=> 42n+51 chia hết cho d

* 21n+25 chia hết cho d

=> 2 (21n+25) chia hết cho d

=> 42n+50 chia hết cho d

Ta lại có:

42n+51 - (42n+50) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> B là phân số tối giản

 

nhấn đ-ú-n-g cko mìh nhaz

Bình luận (0)
AP
26 tháng 3 2018 lúc 18:46

a,(12n+1;30n+2)=1

12n+1 chia hết cho d

30n+2 chia hết cho d

<=>60n+5 chia hết cho d

60n+4 chia hết cho d

=>(12n+1 - 30n+2)=(60n+5)-(60n+4)=1

Bình luận (0)
AP
26 tháng 3 2018 lúc 18:47

Phần b như của bạn Lê Song Thang Nhã nha

Bình luận (0)
DD
Xem chi tiết
LG
14 tháng 7 2018 lúc 14:05

Gọi ƯCLN (12n+1,30n+2) là d

⇒(12n+1)⋮d

(30n+2)⋮d

⇒5(12n+1)−2(30n+2)⋮d

⇒60n+5−60n−4⋮d

⇒1⋮dd=1

Vậy ƯCLN (12n+1,30n+2)=1⇔12n+1/30n+2 là p/s tối giản 

Bình luận (0)
LD
Xem chi tiết
NT
9 tháng 4 2021 lúc 16:11

b) Gọi \(d\inƯC\left(3n+2;2n+1\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}3n+2⋮d\\2n+1⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+4⋮d\\6n+3⋮d\end{matrix}\right.\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\in\left\{1;-1\right\}\)

\(\LeftrightarrowƯCLN\left(3n+2;2n+1\right)=1\)

hay \(B=\dfrac{3n+2}{2n+1}\) là phân số tối giản (đpcm)

Bình luận (0)
H24
9 tháng 4 2021 lúc 12:49

Gọi ƯCLN(n-1,n-2)=d

n-1⋮d 

n-2⋮d

(n-1)-(n-2)⋮d

1⋮d ⇒ƯCLN(n-1,n-2)=1

Vậy n-1/n-2 là ps tối giản

Bình luận (0)

Giải:

A=n-1/n-2

Gọi ƯCLN(n-1;n-2)=d

=>n-1:d

    n-2:d

=>(n-1)-(n-2):d

       -1:d

=>d=1

=>ƯCLN(n-1;n-2)=1

Vậy n-1/n-2 là phân số tối giản.

B=3n+2/2n+1

Gọi ƯCLN(3n+2;2n+1)=d

=>3n+2:d                  =>2.(3n+2):d          =>6n+4:d

    2n+1:d                      3.(2n+1):d               6n+3:d

=>(6n+4)-(6n+3):d

        1:d

=>d=1

Vậy 3n+2/2n+1 là phân số tối giản.

Câu C bạn tự làm nhé!

Chúc bạn may mắn!

Bình luận (0)