Những câu hỏi liên quan
HP
Xem chi tiết
DH
Xem chi tiết
MV
10 tháng 8 2019 lúc 14:36

\(a)\left(2x+1\right)^2=25\)

\(\Rightarrow\left(2x+1\right)^2=\left(\pm5\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}2x+1=5\\2x+1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=4\\2x=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

\(\left(2x-3\right)^2=36\)

\(\Rightarrow\left(2x-3\right)^2=\left(\pm6\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=9\\2x=-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{9}{2}\\x=-\frac{3}{2}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=\frac{9}{2}\\x=-\frac{3}{2}\end{matrix}\right.\)

\(b)5^x+2=625\)

\(\Rightarrow5^x=623\)

\(\Rightarrow x\in\varnothing\)

Vậy \(x\in\varnothing\)

\(\left(2x-1\right)^3=-8\)

\(\Rightarrow\left(2x-1\right)^3=\left(-2\right)^3\)

\(\Rightarrow2x-1=-2\)

\(\Rightarrow2x=-1\)

\(\Rightarrow x=-\frac{1}{2}\)

Bình luận (1)
MV
10 tháng 8 2019 lúc 14:47

\(c)\left(x-3\right)^2+\left(15x-45\right)^4=0\)

- Có \(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0,\forall x\\\left(15x-45\right)^4\ge0,\forall x\end{matrix}\right.\Rightarrow\left(x-3\right)^2+\left(15x-45\right)^4\ge0,\forall x\)

Suy ra: Để \(\left(x-3\right)^2+\left(15x-45\right)^4=0\) thì \(\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left(15x-45\right)^4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-3=0\\15x-45=0\end{matrix}\right.\Rightarrow x=3\)

\(\left|x-3\right|+\left(x^2-3x\right)^2=0\)

- Có \(\left\{{}\begin{matrix}\left|x-3\right|\ge0,\forall x\\\left(x^2-3x\right)^2\ge0,\forall x\end{matrix}\right.\Rightarrow\left|x-3\right|+\left(x^2-3x\right)^2\ge0,\forall x\)

Suy ra: Để \(\left|x-3\right|+\left(x^2-3x\right)^2=0\)thì \(\left\{{}\begin{matrix}\left|x-3\right|=0\\\left(x^2-3x\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-3=0\\x^2-3x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\x\left(x-3\right)=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

Bình luận (0)
YH
Xem chi tiết
TN
9 tháng 3 2020 lúc 16:14

\(a.\frac{x-5}{4}-2x+1=\frac{x}{3}-\frac{2-x}{6}\\\Leftrightarrow \frac{3\left(x-5\right)}{12}-\frac{24}{12}x+\frac{12}{12}=\frac{4x}{12}-\frac{2\left(2-x\right)}{12}\\\Leftrightarrow 3\left(x-5\right)-24x+12=4x-2\left(2-x\right)\\\Leftrightarrow 3x-15-24x+12=4x-4+2x\\ \Leftrightarrow3x-15-24x+12-4x+4-2x=0\\ \Leftrightarrow-27x+1=0\\ \Leftrightarrow-27x=-1\\ \Leftrightarrow x=\frac{1}{27}\)

\(b.\left(2x-1\right)^2=\left(x-2\right)\left(2x-1\right)\\ \Leftrightarrow\left(2x-1\right)^2-\left(x-2\right)\left(2x-1\right)=0\\ \Leftrightarrow\left(2x-1\right)\left[\left(2x-1\right)-\left(x-2\right)\right]=0\\ \Leftrightarrow\left(2x-1\right)\left(2x-1-x+2\right)=0\\ \Leftrightarrow\left(2x-1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-1\end{matrix}\right.\)

\(c.\frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{-3}{25-x^2}\\\Leftrightarrow \frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{3}{x^2-25}\\\Leftrightarrow \frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{3}{\left(x-5\right)\left(x+5\right)}\\ \Leftrightarrow\frac{\left(x+5\right)\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}-\frac{\left(x-5\right)\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}=\frac{3}{\left(x-5\right)\left(x+5\right)}\\ \Leftrightarrow\left(x+5\right)\left(x+5\right)-\left(x-5\right)\left(x-5\right)=3\\\Leftrightarrow x^2+5x+5x+25-\left(x^2-5x-5x+25\right)=3\\\Leftrightarrow x^2+5x+5x+25-x^2+5x+5x-25=3\\ \Leftrightarrow20x=3\\ \Leftrightarrow x=\frac{3}{20}\)

\(d.x^2-x-12=0\\\Leftrightarrow x^2-4x+3x-12=0\\\Leftrightarrow \left(x^2-4x\right)+\left(3x-12\right)=0\\ \Leftrightarrow x\left(x-4\right)+3\left(x-4\right)=0\\ \Leftrightarrow\left(x-4\right)\left(x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-4=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa
DB
Xem chi tiết
TG
12 tháng 4 2020 lúc 10:55

a/ \(2x+\frac{1}{7}=\frac{1}{3}\)

=> \(2x=\frac{1}{3}-\frac{1}{7}=\frac{7}{21}-\frac{3}{21}\)

=> \(2x=\frac{4}{21}\)

=> \(x=\frac{4}{21}:2=\frac{4}{21}.\frac{1}{2}=\frac{2}{21}\)

b/ \(3\left(x-\frac{1}{2}\right)=\frac{4}{9}\)

=> \(x-\frac{1}{2}=\frac{4}{9}:3=\frac{4}{9}.\frac{1}{3}\)

=> \(x-\frac{1}{2}=\frac{4}{27}\)

=> \(x=\frac{4}{27}+\frac{1}{2}=\frac{8}{54}+\frac{27}{54}=\frac{35}{54}\)

c/ \(\left(x-5\right)^2+4=68\)

=> \(\left(x-5\right)^2=68-4=64\)

=> \(\left[{}\begin{matrix}x-5=8\\x-5=-8\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=8+5=13\\x=-8+5=-3\end{matrix}\right.\)

d/ \(\left(\left|x\right|-\frac{1}{2}\right)\left(2x+\frac{3}{2}\right)=0\)

=> \(\left[{}\begin{matrix}\left|x\right|-\frac{1}{2}=0\\2x+\frac{3}{2}=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}\left|x\right|=0+\frac{1}{2}=\frac{1}{2}\\2x=0-\frac{3}{2}=-\frac{3}{2}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{1}{2}\end{matrix}\right.\\x=-\frac{3}{2}:2=-\frac{3}{2}.\frac{1}{2}=-\frac{3}{4}\end{matrix}\right.\)

e) \(5x+2=3x+8\)

=> \(5x-3x=8-2=6\)

=> \(2x=6\)

=> \(x=6:2=3\)

f/ \(26-\left(5-2x\right)=27\)

=> \(5-2x=26-27=-1\)

=> \(2x=5-\left(-1\right)=5+1=6\)

=> \(x=6:2=3\)

g/ \(\left(4x-8\right)-\left(2x-6\right)=4\)

=> \(4x-8-2x+6=4\)

=> \(\left(4x-2x\right)+\left(-8+6\right)=4\)

=> \(2x+-2=4\)

=> \(2x=4+2=6\)

=> \(x=6:2=3\)

h/ \(\left(x+3\right)^3:3-1=-10\)

=> \(\left(x+3\right)^3:3=-10+1=-9\)

=> \(\left(x+3\right)^3=-9.3=-27\)

=> \(x+3=-3\)

=> \(x=-3-3=-6\)

Bình luận (0)
HN
Xem chi tiết
AT
26 tháng 4 2018 lúc 20:37

heoheo lần sau bạn đánh = kí hiệu đi :(((

a/ \(\dfrac{x}{3}+\dfrac{2x-1}{6}=\dfrac{1}{2}\)

\(\Leftrightarrow2x+2x-1=3\)

<=> 4x = 4 <=> x = 1

Vậy x = 1

b/ \(\dfrac{3x+1}{2}+\dfrac{x-1}{3}=\dfrac{x-9}{6}\)

\(\Leftrightarrow3\left(3x+1\right)+2\left(x-1\right)=x-9\)

\(\Leftrightarrow9x+3+2x-2=x-9\)

\(\Leftrightarrow10x=-10\Leftrightarrow x=-1\)

Vậy pt có nghiệm x = -1

c/ \(\dfrac{x-1}{x-2}=\dfrac{x+3}{x+2}\) ĐKXĐ: \(x\ne\pm2\)

<=> \(\left(x-1\right)\left(x+2\right)=\left(x+3\right)\left(x-2\right)\)

\(\Leftrightarrow x^2+2x-x-2=x^2-2x+3x-6\)

\(\Leftrightarrow0x=-4\left(voly\right)\)

Vậy pt vô nghiệm

d/ \(\dfrac{3x-1}{3x+1}+\dfrac{x-3}{x+3}=2\) ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-3\\x\ne-\dfrac{1}{3}\end{matrix}\right.\)

pt <=> \(\dfrac{\left(3x-1\right)\left(x+3\right)}{\left(3x+1\right)\left(x+3\right)}+\dfrac{\left(x-3\right)\left(3x+1\right)}{\left(3x+1\right)\left(x+3\right)}=\dfrac{2\left(3x+1\right)\left(x+3\right)}{\left(3x+1\right)\left(x+3\right)}\)

=> (3x-1)(x+3) + (x-3)(3x+1) = 2(3x+1)(x+3)

\(\Leftrightarrow3x^2+8x-3+3x^2-8x-3=6x^2+20x+6\)

\(\Leftrightarrow-20x=12\Leftrightarrow x=-\dfrac{3}{5}\left(tm\right)\)

Vậy pt có nghiệm x=....

e/ như ý d

Bình luận (1)
PN
Xem chi tiết
HV
Xem chi tiết
CL
26 tháng 11 2016 lúc 20:05

1 a

2c

3b

4d

5c

6c

Bình luận (0)
CT
Xem chi tiết
H24
28 tháng 3 2018 lúc 19:36

1)

a) \(2x-6=0\)

\(\Leftrightarrow2x=6\)

\(\Leftrightarrow x=3\)

b) \(x\times\left(x+2\right)-3\times\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\times\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)

c) \(\frac{x-6}{x+1}=\frac{x^2}{x-1}\)

nhân chéo lên, ngại chết đc

Bình luận (0)
HT
Xem chi tiết
H24
18 tháng 3 2020 lúc 11:36

\(\left(x-\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0^2\)

\(\Leftrightarrow x-\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy x = 1/2

\(\left(x-2\right)^2=1\)

\(\Leftrightarrow\left(x-2\right)^2=1^2\)

\(\Leftrightarrow x-2=1\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=1\\x-2=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}}\)

Vậy x = 3 hoặc x = 1

\(\left(2x-1\right)^3=-8\)

\(\Leftrightarrow\left(2x-1\right)^3=\left(-2\right)^3\)

\(\Leftrightarrow2x-1=-2\)

<=> 2x = -1

<=> x = -0,5

Vậy x = -0,5

Bình luận (0)
 Khách vãng lai đã xóa
NT
18 tháng 3 2020 lúc 11:52

\(\left(x-\frac{1}{2}\right)^2=0\)

\(x-\frac{1}{2}=0\)

\(x=\frac{1}{2}\)

\(\left(x-2\right)^2=1\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=1\\x-2=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1+2\\x=-1+2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

Vậy\(x\in\left\{3;1\right\}\)
\(\left(2x-1\right)^3=-8\)

\(\left(2x-1\right)^3=\left(-2\right)^3\)

\(2x-1=-2\)

\(2x=\left(-2\right)+1\)

\(2x=-1\)

\(x=-1\times2\)

\(x=-2\)

\(x\left(\frac{1}{2}\right)^2=\frac{1}{16}\)

\(x\left(\frac{1}{2}\right)^2=\left(\frac{1}{4}\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}x\frac{1}{2}=\frac{1}{4}\\x\frac{1}{2}=-\frac{1}{4}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{4}:\frac{1}{2}\\x=-\frac{1}{4}:\frac{1}{2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}}\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
18 tháng 3 2020 lúc 12:17

\(49\times7^x=2401\)

   \(7^x=2401:49\)

\(7^x=49\)

\(7^x=7^2\)

\(\Rightarrow x=2\)

\(2x^x-15=17\)

\(2x^x=17+15\)

\(2x^x=32\)

\(2x^x=2^5\)

\(\Rightarrow x\times x=5\)

\(\Rightarrow x^2=5\)

\(2^x+3\times2^x=32\)

\(2^x\times\left(3+1\right)=32\)

\(2^x\times4=32\)

\(2^x=32:4\)

\(2^x=8\)

\(2^x=2^3\)

\(\Rightarrow x=3\)

\(2x\left(x-\frac{1}{7}\right)=0\)

\(x\left(x-\frac{1}{7}\right)=0:2\)

\(x\left(x-\frac{1}{7}\right)=0\)

\(x\times x-x\times\frac{1}{7}=0\)

\(x^2-x\frac{1}{7}=0\)

\(x-x=0:\frac{1}{7}\)

\(x-x=0\)

\(\Rightarrow x=0\)

Bình luận (0)
 Khách vãng lai đã xóa