Những câu hỏi liên quan
LN
Xem chi tiết
NT
2 tháng 8 2021 lúc 23:53

Bài 1: 

a) Thay m=3 vào (1), ta được:

\(x^2-4x+3=0\)

a=1; b=-4; c=3

Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)

Bình luận (0)
NT
2 tháng 8 2021 lúc 23:54

Bài 2: 

a) Thay m=0 vào (2), ta được:

\(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

hay x=1

Bình luận (0)
H24
Xem chi tiết
NT
16 tháng 4 2023 lúc 14:09

a: Khi m=1 thì (1) sẽ là:

x^2-4x-5=0

=>x=5 hoặc x=-1

Bình luận (0)
TT
Xem chi tiết
PA
Xem chi tiết
LD
10 tháng 5 2021 lúc 20:34

a) Với m = 5 phương trình đã cho trở thành 

x2 - 8x + 7 = 0 

Dễ thấy phương trình trên có a + b + c = 0 nên có hai nghiệm phân biệt x1 = 1 ; x2 = c/a = 7

Vậy với m = 5 thì phương trình đã cho có tập nghiệm S = { 1 ; 7 }

b) Ta có : Δ = b2 - 4ac = [ -2( m - 1 ) ]2 - 4( m + 2 )

= 4( m2 - 2m + 1 ) - 4m + 8

= 4m2 - 12m + 12 = 4( m - 3/2 )2 + 3 ≥ 3 > 0 ∀ m

=> Phương trình đã cho luôn có hai nghiệm phân biệt với mọi số thực m

Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m-2\\x_1x_2=\frac{c}{a}=m+2\end{cases}}\)

Ta có : \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=4\Leftrightarrow\frac{x_1^2}{x_1x_2}+\frac{x_2^2}{x_1x_2}=4\)

\(\Rightarrow x_1^2+x_2^2=4x_1x_2\Leftrightarrow\left(x_1+x_2\right)^2-6x_1x_2=0\)

\(\Rightarrow\left(2m-2\right)^2-6\left(m+2\right)=0\)

\(\Leftrightarrow4m^2-8m+4-6m-12=0\Leftrightarrow2m^2-7m-4=0\)

Đến đây dễ rồi bạn tự làm tiếp heng :)

Bình luận (0)
 Khách vãng lai đã xóa
LD
Xem chi tiết
HH
Xem chi tiết
MH
19 tháng 2 2022 lúc 8:53

\(mx-x-m+2=0\)

\(x\left(m-1\right)=m-2\)

Nếu m=1 ⇒ \(0x=-1\) (vô nghiệm)

Nếu m≠1 ⇒ \(x=\dfrac{m-2}{m-1}\)

Vậy ...

Bình luận (0)
PB
Xem chi tiết
CT
23 tháng 10 2019 lúc 16:07

a. + Với  m = − 1 2   phương trình (1) trở thành x 2 − 4 x = 0 ⇔ x = 0 x = 4 .

+ Vậy khi  m = − 1 2  phương trình có hai nghiệm x= 0 và x= 4.

b. + Phương trình có hai nghiệm dương phân biệt khi 

                            Δ = 2 m + 5 2 − 4 2 m + 1 > 0 x 1 + x 2 = 2 m + 5 > 0 x 1 . x 2 = 2 m + 1 > 0

+ Ta có  Δ = 2 m + 5 2 − 4 2 m + 1 = 4 m 2 + 12 m + 21 = 2 m + 3 2 + 12 > 0 , ∀ m ∈ R

+ Giải được điều kiện  m > − 1 2  (*).

+ Do P>0 nên P đạt nhỏ nhất khi P 2  nhỏ nhất.

+ Ta có P 2 = x 1 + x 2 − 2 x 1 x 2 = 2 m + 5 − 2 2 m + 1 = 2 m + 1 − 1 2 + 3 ≥ 3     ( ∀ m > − 1 2 ) ⇒ P ≥ 3    ( ∀ m > − 1 2 ) .

và P = 3  khi m= 0 (thoả mãn (*)).

+ Vậy giá trị nhỏ nhất  P = 3  khi m= 0.

Bình luận (0)
NA
Xem chi tiết
AH
31 tháng 1 2023 lúc 0:04

Bài 1:
$2x^4-3x^2-5=0$

$\Leftrightarrow (2x^4+2x^2)-(5x^2+5)=0$

$\Leftrightarrow 2x^2(x^2+1)-5(x^2+1)=0$
$\Leftrightarrow (x^2+1)(2x^2-5)=0$

$\Leftrightarrow 2x^2-5=0$ (do $x^2+1\geq 1>0$ với mọi $x\in\mathbb{R}$)

$\Leftrightarrow x^2=\frac{5}{2}$

$\Leftrightarrow x=\pm \sqrt{\frac{5}{2}}$

Bình luận (0)
AH
31 tháng 1 2023 lúc 0:09

Bài 2:

a. Khi $m=1$ thì pt trở thành:

$x^2-6x+5=0$

$\Leftrightarrow (x^2-x)-(5x-5)=0$

$\Leftrightarrow x(x-1)-5(x-1)=0$
$\Leftrightarrow (x-1)(x-5)=0$
$\Leftrightarrow x-1=0$ hoặc $x-5=0$

$\Leftrightarrow x=1$ hoặc $x=5$

b.

Để pt có 2 nghiệm $x_1,x_2$ thì:
$\Delta=(m+5)^2-4(-m+6)\geq 0$

$\Leftrightarrow m^2+14m+1\geq 0(*)$

Áp dụng định lý Viet:

$x_1+x_2=m+5$
$x_1x_2=-m+6$

Khi đó:
$x_1^2x_2+x_1x_2^2=18$

$\Leftrightarrow x_1x_2(x_1+x_2)=18$

$\Leftrightarrow (m+5)(-m+6)=18$

$\Leftrightarrow -m^2+m+12=0$
$\Leftrightarrow m^2-m-12=0$

$\Leftrightarrow (m+3)(m-4)=0$

$\Leftrightarrow m=-3$ hoặc $m=4$

Thử lại vào $(*)$ thấy $m=4$ thỏa mãn.

 

Bình luận (0)
NL
Xem chi tiết