giải phương trình: \(x+4\sqrt{x+3}+2\sqrt{3-2x}=11\)
Giải các phương trình sau:
a) \(\sqrt{x+\sqrt{x-11}}+\sqrt{x-\sqrt{x-11}}=4\).
b) \(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)
a, ĐK: \(x\ge11\)
\(\sqrt{x+\sqrt{x-11}}+\sqrt{x-\sqrt{x-11}}=4\)
\(\Leftrightarrow x+\sqrt{x-11}+x-\sqrt{x-11}+2\sqrt{x^2-x+11}=16\)
\(\Leftrightarrow2x+2\sqrt{x^2-x+11}=16\)
\(\Leftrightarrow x+\sqrt{x^2-x+11}=8\)
Ta thấy \(x+\sqrt{x^2-x+11}>11>\text{}8\)
\(\Rightarrow\) phương trình vô nghiệm.
\(a,\sqrt{x+\sqrt{x-11}}+\sqrt{x-\sqrt{x-11}}=4\left(x\ge11\right)\\ \Leftrightarrow x+\sqrt{x-11}+x-\sqrt{x-11}+2\sqrt{\left(x+\sqrt{x-11}\right)\left(x-\sqrt{x-11}\right)}=16\\ \Leftrightarrow2x+2\sqrt{x^2-x+11}=16\\ \Leftrightarrow x+\sqrt{x^2-x+11}=8\\ \Leftrightarrow\sqrt{x^2-x+11}=8-x\\ \Leftrightarrow x^2-x+11=x^2-16x+64\\ \Leftrightarrow15x=53\\ \Leftrightarrow x=\dfrac{53}{15}\left(ktm\right)\)
\(b,\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\left(x\ge\dfrac{5}{2}\right)\\ \Leftrightarrow\sqrt{2x-5+6\sqrt{2x-5}+9}+\sqrt{2x-5-2\sqrt{2x-5}+1}=4\\ \Leftrightarrow\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\\ \Leftrightarrow\sqrt{2x-5}+3+\left|\sqrt{2x-5}-1\right|=4\\ \Leftrightarrow\left|\sqrt{2x-5}-1\right|=1-\sqrt{2x-5}\\ \Leftrightarrow\sqrt{2x-5}-1\le0\\ \Leftrightarrow\sqrt{2x-5}\le1\\ \Leftrightarrow2x-5\le1\Leftrightarrow x\le\dfrac{5}{2}\\ \Leftrightarrow x=\dfrac{5}{2}\)
b, ĐK: \(x\ge\dfrac{5}{2}\)
\(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)
\(\Leftrightarrow\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-\sqrt{2x-5}}=4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)
\(\Leftrightarrow\left|\sqrt{2x-5}+3\right|+\left|\sqrt{2x-5}-1\right|=4\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\):
\(\left|\sqrt{2x-5}+3\right|+\left|\sqrt{2x-5}-1\right|\)
\(=\left|\sqrt{2x-5}+3\right|+\left|1-\sqrt{2x-5}\right|\)
\(\ge\left|\sqrt{2x-5}+3+1-\sqrt{2x-5}\right|\)
\(=4\)
Đẳng thức xảy ra khi:
\(\left(\sqrt{2x-5}+3\right)\left(1-\sqrt{2x-5}\right)\ge0\)
\(\Leftrightarrow1-\sqrt{2x-5}\ge0\)
\(\Leftrightarrow\sqrt{2x-5}\le1\)
\(\Leftrightarrow0\le2x-5\le1\)
\(\Leftrightarrow\dfrac{5}{2}\le x\le3\)
giải phương trình
\(x+4\sqrt{x+3}+2\sqrt{3-2x}=11\)
\(ĐK:-3\le x\le\dfrac{3}{2}\\ PT\Leftrightarrow11-x-4\sqrt{x+3}-2\sqrt{3-2x}=0\\ \Leftrightarrow\left(x+3-4\sqrt{x+3}+4\right)+\left(3-2x-2\sqrt{3-2x}+1\right)=0\\ \Leftrightarrow\left(\sqrt{x+3}-2\right)^2+\left(\sqrt{3-2x}-1\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x+3}=2\\\sqrt{3-2x}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+3=2\\3-2x=1\end{matrix}\right.\Leftrightarrow x=1\left(tm\right)\)
Lời giải cho phương trình \(\sqrt { - 2{x^2} - 2x + 11} = \sqrt { - {x^2} + 3} \) như sau đúng hai sai?
\(\)\(\sqrt { - 2{x^2} - 2x + 11} = \sqrt { - {x^2} + 3} \)
\( \Rightarrow - 2{x^2} - 2x + 11 = - {x^2} + 3\) (bình phương cả hai vế để làm mất dấu căn)
\( \Rightarrow {x^2} + 2x - 8 = 0\) (chuyển vế, rút gọn)
\( \Rightarrow x = 2\) hoặc \(x = - 4\) (giải phương trình bậc hai)
Vậy phương trình đã cho có hai nghiệm là 2 và -4.
Thay \(x = 2\) vào phương trình \(\sqrt { - 2{x^2} - 2x + 11} = \sqrt { - {x^2} + 3} \) ta thấy không thỏa mãn vì dưới dấu căn là \( - 1\) không thỏa mãn
Vậy \(x = 2\) không là nghiệm của phương trình do đó lời giải như trên là sai.
Giải phương trình \(x+4\sqrt{x+3}+2\sqrt{3-2x}=11\)
Giải phương trình và hệ phương trình sau:
a. \(\sqrt{x^2+6x+9}=\sqrt{11+6\sqrt{2}}\)
b. \(\left\{{}\begin{matrix}2x-y=4\\x+2y=-3\end{matrix}\right.\)
a: \(\sqrt{x^2+6x+9}=\sqrt{11+6\sqrt{2}}\)
=>\(\sqrt{\left(x+3\right)^2}=\sqrt{\left(3+\sqrt{2}\right)^2}\)
=>\(\left|x+3\right|=\left|3+\sqrt{2}\right|=3+\sqrt{2}\)
=>\(\left[{}\begin{matrix}x+3=3+\sqrt{2}\\x+3=-3-\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-6-\sqrt{2}\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}2x-y=4\\x+2y=-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4x-2y=8\\x+2y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x-2y+x+2y=8-3\\2x-y=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5x=5\\y=2x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\cdot1-4=-2\end{matrix}\right.\)
Giải phương trình
\(x+4\sqrt{x+3}+2\sqrt{3-2x}=11\)
điều kiện x+3>=0 và 3-2x<=0 hay -3\(\le x\le\frac{3}{2}\) (1)
\(\sqrt{x+3}=a\);\(\sqrt{3-2x}=b\) => x=\(a^2-3\) và 2a2+b2=3
thay vào ta được x+4a+2b=11 <=>a2-3+4a+2b=11 <=>a2+4a+2b=14
ta có hệ phương trình \(\hept{\begin{cases}2a^2+b^2=9\\a^2+4a+2b=14\end{cases}}\)<=>\(\hept{\begin{cases}2a^2+b^2-a^2-4a-2b=3-14\\2a^2+b^2=9\end{cases}}\)<=>\(\hept{\begin{cases}\left(a-2\right)^2+\left(b-1\right)^2=0\\2a^2+b^2=9\end{cases}}\)<=>\(\hept{\begin{cases}a=2\\b=1\end{cases}}\)<=>\(\hept{\begin{cases}\sqrt{x+3}=2\\\sqrt{3-2x}=1\end{cases}}\)<=>x=1 (thỏa mãn điều kiện (1))
vậy pt có nghiệm duy nhất x=1
\(DK:x\in\left[-3;\frac{3}{2}\right]\)
PT\(\Leftrightarrow\left(x-1\right)+\left(4\sqrt{x+3}-8\right)+\left(2\sqrt{3-2x}-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)+\frac{4\left(x-1\right)}{\sqrt{x+3}+2}-\frac{4\left(x-1\right)}{\sqrt{3-2x}+1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(1+\frac{4}{\sqrt{x+3}+2}-\frac{4}{\sqrt{3-2x}+1}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(1\right)\\1+\frac{4}{\sqrt{x+3}+2}-\frac{4}{\sqrt{3-2x}+1}=0\left(2\right)\end{cases}}\)
PT(2) khac khong voi moi \(x\in\left[-3;\frac{3}{2}\right]\)
Vay nghiem cua PT la \(x=1\)
ĐK \(-3\le x\le\frac{3}{2}\)
Phương trình đã cho tương đương với: \(11-x-4\sqrt{x+3}-2\sqrt{3-2x}=0\)
\(\Leftrightarrow\left(x+3-4\sqrt{x+3}+4\right)+\left(3-2x-2\sqrt{3-2x}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x+3}-2\right)^2+\left(\sqrt{3-2x}-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x+3}-2=0\\\sqrt{3-2x}-1=0\end{cases}\Leftrightarrow x=1}\)
Giải phương trình vô tỉ:
\(3\left(\sqrt{2x+1}+\sqrt{x}-2x+11\right)=4\sqrt{2x^2+x}\)
Giải phương trình:
\(11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{\left(5-x\right)\left(2x-1\right)}\)
\(\sqrt{x+3}+2\sqrt{x}=2+\sqrt{x\left(x+3\right)}\)
Tham khảo:
1) Giải phương trình : \(11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{\left(5-x\right)\left(2x-1\right)}\) - Hoc24
\(\sqrt{x+3}+2\sqrt{x}=2+\sqrt{x\left(x+3\right)}\left(đk:x\ge0\right)\)
\(\Leftrightarrow x+3+4x+4\sqrt{x\left(x+3\right)}=4+x\left(x+3\right)+4\sqrt{x\left(x+3\right)}\)
\(\Leftrightarrow5x+3=4+x^2+3x\)
\(\Leftrightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\left(tm\right)\)
a) \(2\left(x^2-2x\right)+\sqrt{x^2-2x-3}-9=0\)
b) \(3\sqrt{2+x}-6\sqrt{2-x}+4\sqrt{4-x^2}=10-3x\)
c) Cho phương trình: \(\sqrt{x}+\sqrt{9-x}=\sqrt{-x^2+9x+m}\)
+) Giải phương trình khi m=9
+) Tìm m để phương trình có nghiệm
a, ĐK: \(x\le-1,x\ge3\)
\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)
\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)
\(\Leftrightarrow x^2-2x-3=1\)
\(\Leftrightarrow x^2-2x-4=0\)
\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)
b, ĐK: \(-2\le x\le2\)
Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)
Khi đó phương trình tương đương:
\(3t-t^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)
Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm
Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)
c, ĐK: \(0\le x\le9\)
Đặt \(\sqrt{9x-x^2}=t\left(0\le t\le\dfrac{9}{2}\right)\)
\(pt\Leftrightarrow9+2\sqrt{9x-x^2}=-x^2+9x+m\)
\(\Leftrightarrow-\left(-x^2+9x\right)+2\sqrt{9x-x^2}+9=m\)
\(\Leftrightarrow-t^2+2t+9=m\)
Khi \(m=9,pt\Leftrightarrow-t^2+2t=0\Leftrightarrow\left[{}\begin{matrix}t=0\\t=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}9x-x^2=0\\9x-x^2=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=9\left(tm\right)\\x=\dfrac{9\pm\sqrt{65}}{2}\left(tm\right)\end{matrix}\right.\)
Phương trình đã cho có nghiệm khi phương trình \(m=f\left(t\right)=-t^2+2t+9\) có nghiệm
\(\Leftrightarrow minf\left(t\right)\le m\le maxf\left(t\right)\)
\(\Leftrightarrow-\dfrac{9}{4}\le m\le10\)