Tìm x :
a,x2-2x+1=4
b,16-(x-3)2=0
a/ 2b -√b2−4b+4b−2
b/ |x+4| - x+4√x2+8x+16
c/√4−4a+a2−2a với -4 ≤x≤ 2
d/|x+4| - x+4√x2+8x+16
e/√4x^2-4x+1/2x-1với x<1/2
f/|x|+x√x2
với x>0
cac ban giai giup minh voi
:(((
tìm x thỏa mãn:
a) (x+2)(x+3)-(x-2)(x-5)=-4
b) (x+1)(x2-x+1)-x(x-3)(x+3)=8
c) 4x2-9=(3x+1)(2x-3)
d) (3x+1)2-4(x-1)2=0
a: Ta có: \(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x-5\right)=-4\)
\(\Leftrightarrow x^2+5x+6-x^2+7x-10=-4\)
\(\Leftrightarrow12x=0\)
hay x=0
b: Ta có: \(\left(x+1\right)\left(x^2-x+1\right)-x\left(x-3\right)\left(x+3\right)=8\)
\(\Leftrightarrow x^3+1-x^3+9x=8\)
\(\Leftrightarrow9x=7\)
hay \(x=\dfrac{7}{9}\)
c: Ta có: \(4x^2-9=\left(3x+1\right)\left(2x-3\right)\)
\(\Leftrightarrow\left(3x+1\right)\left(2x-3\right)-\left(2x-3\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(3x+1-2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=2\end{matrix}\right.\)
a/ 2b -√b2−4b+4b−2
b/ |x+4| - x+4√x2+8x+16
c/√4−4a+a2−2a với -4 ≤x≤ 2
d/|x+4| - x+4√x2+8x+16
e/√4x^2-4x+1/2x-1với x<1/2
f/|x|+x√x2
với x>0
Các bạn giải giusp tớ với mình đang cần gấp ạ
Bài 1: Tìm nghiệm của đa thức sau:
a) A(x)=x2-4x+4
b) B(x)=2x3+x2+2x+1
c) C(x)=|2x-3|- 1/3
Bài 2: Tìm giá trị nhỏ nhất của biểu thức sau:
a) x2-4x+5
b) -100/(x+1)2+10
(GIÚP MÌNH CẢ 2 BÀI NHÉ! )
Bài 2 :
a, \(x^2-4x+4+1=\left(x-2\right)^2+1\ge1\)
Dấu ''='' xảy ra khi x = 2
b, Ta có \(\left(x+1\right)^2+10\ge10\Rightarrow\dfrac{-100}{\left(x+1\right)^2+10}\ge-\dfrac{100}{10}=-10\)
Dấu ''='' xảy ra khi x = -1
Bài 1 :
a, Ta có \(A\left(x\right)=x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)
b, \(B\left(x\right)=x^2\left(2x+1\right)+\left(2x+1\right)=\left(x^2+1>0\right)\left(2x+1\right)=0\Leftrightarrow x=-\dfrac{1}{2}\)
c, \(C\left(x\right)=\left|2x-3\right|=\dfrac{1}{3}\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{1}{3}+3=\dfrac{10}{3}\\2x=-\dfrac{1}{3}+3=\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)
a. x+1/x-2 - x/x+2 + 8/x2 -4
b. x-3/x+1 - x+2/x-1 + 8x/x2 -1
c. x+2/x2-2x + 2/x2+2x + 3x+2/x2-4
d. 4/x - 12/x2+3x + 5/x+3
a: \(=\dfrac{x^2+3x+2-x^2+2x+8}{\left(x-2\right)\left(x+2\right)}=\dfrac{5x+10}{\left(x-2\right)\left(x+2\right)}=\dfrac{5}{x-2}\)
b: \(=\dfrac{x^2-4x+3-x^2-3x-2+8x}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}=\dfrac{1}{x-1}\)
c: \(=\dfrac{x+2}{x\left(x-2\right)}+\dfrac{2}{x\left(x+2\right)}+\dfrac{3x+2}{\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{x^2+2x+2x-4+3x+2}{x\left(x-2\right)\left(x+2\right)}=\dfrac{x^2+7x-2}{x\left(x-2\right)\left(x+2\right)}\)
a,
\(\dfrac{x+1}{x-2}-\dfrac{x}{x+2}+\dfrac{8}{x^2-4}\\ =\dfrac{x^2+3x+2-x^2+2x+8}{\left(x-2\right)\left(x+2\right)}=\dfrac{5x+10}{\left(x-2\right)\left(x+2\right)}=\dfrac{5\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{5}{x-2}\)
b,
\(\dfrac{x-3}{x+1}-\dfrac{x+2}{x-1}+\dfrac{8x}{x^2-1}\\ =\dfrac{x^2-4x+3-x^2-3x-2+8x}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{1}{x-1}\)
Tìm x biết:
1,
a,3x(x+1) - 2x(x+2) = -x-1
b,2x(x-2020) - x+2020 = 0
c,(x-4)2 - 36 = 0
d,x2 + 8x - 16 = 0
e,x(x+6) - 7x - 42 = 0
f,25x2 - 16 = 0
2,
a,3x3 - 12x = 0
b,x2 + 3x - 10 = 0
Bài 1:
a) \(\Rightarrow3x^2+3x-2x^2-4x+x+1=0\)
\(\Rightarrow x^2=-1\left(VLý\right)\Rightarrow S=\varnothing\)
b) \(\Rightarrow\left(x-2020\right)\left(2x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2020\\x=\dfrac{1}{2}\end{matrix}\right.\)
c) \(\Rightarrow\left(x-10\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)
d) \(\Rightarrow\left(x+4\right)^2=0\Rightarrow x=-4\)
e) \(\Rightarrow\left(x+6\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)
f) \(\Rightarrow\left(5x-4\right)\left(5x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{4}{5}\end{matrix}\right.\)
Bài 2:
a) \(\Rightarrow3x\left(x^2-4\right)=0\Rightarrow3x\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
b) \(\Rightarrow x\left(x-2\right)+5\left(x-2\right)=0\Rightarrow\left(x-2\right)\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
Giải phương trình:
a/ x2 - 2(x-2) = 4
b/ x2 - 9 - 2x(x - 3) = 0
a/
\(\Leftrightarrow x^2-2x+4-4=0\\ \Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow x=0;x-2=0\)
\(\Leftrightarrow x=0;x=2\)
b/
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)-2x\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3-2x\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(3-x\right)=0\)
\(\Rightarrow x=3\)
\(a,x^2-2.\left(x-2\right)=4\\ \Leftrightarrow x^2-2x+4-4=0\\ \Leftrightarrow x^2-2x=0\\ \Leftrightarrow x.\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\\ \Rightarrow S=\left\{0;2\right\}\\ b,x^2-9-2x\left(x-3\right)=0\\ \Leftrightarrow x^2-4x^2+6x-9=0\\ \Leftrightarrow-3x^2+6x-9=0\\ \Leftrightarrow x^2-2x+3=0\\ \Leftrightarrow\left(x^2-2x+1\right)+2=0\\ \Leftrightarrow\left(x-1\right)^2=-2\left(vô.lí\right)\\ \Rightarrow Pt.vô.nghiệm\)
Tìm x biết:
a) ( x – 1 ) 3 + ( 2 – x ) ( 4 + 2 x + x 2 ) + 3x(x + 2) = 16;
b) (x + 2)( x 2 – 2x + 4) – x( x 2 – 2) = 15.
a) Rút gọn được VT = 9x + 7. Từ đó tìm được x = 1.
b) Rút gọn được VT = 2x + 8. Từ đó tìm được x = 7 2 .
Bài 1: Tìm x :
a. ( x + 4 )2 - ( x + 1 ) ( x - 1 ) = 16
b. ( 2x - 1 )2 + ( x + 3 )2 - 5 ( x + 7 ) ( x - 7 ) = 0
c. ( x - 2 )3 - ( x - 3 ) ( x2 + 3x + 9 ) + 6 ( x + 1 )2 = 49