bài thầy cho:GPT \(\sqrt{x^2+x+1}+\sqrt{x^2-x+1}=2\)
Bài 1:Tìm ĐKXĐ:
a.\(\sqrt{3x}\)
b.\(\sqrt{\dfrac{x-1}{x+3}}\)
Bài 2:Thực hiện phép tính:
C=\(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)
Bài 3:
A=(1-\(\dfrac{\sqrt{x}}{\sqrt{x}+2}\)):(\(\dfrac{1}{\sqrt{x}-2}-\dfrac{2}{x-4}\)) với x>0;x≠4
a.Rút gọn A
b.Tính giá trị của A khi x =\(\dfrac{1}{4}\)
c. Chứng minh A<2
d.Tìm giá trị nguyên của x để A nguyên.
Trả lời giúp mình với ạ!Mình cảm ơn nhiều!
Bài 1:
a. ĐKXĐ: $3x\geq 0$
$\Leftrightarrow x\geq 0$
b. ĐKXĐ: $\frac{x-1}{x+3}\geq 0$
\(\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} x-1\geq 0\\ x+3>0\end{matrix}\right.\\ \left\{\begin{matrix} x-1\leq 0\\ x+3< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x\geq 1\\ x< -3\end{matrix}\right.\)
Bài 2:
\(C=\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}=\sqrt{2+2\sqrt{2.3}+3}-\sqrt{2-2\sqrt{2.3}+3}\)
\(=\sqrt{(\sqrt{2}+\sqrt{3})^2}-\sqrt{(\sqrt{2}-\sqrt{3})^2}\)
\(=|\sqrt{2}+\sqrt{3}|-|\sqrt{2}-\sqrt{3}|=(\sqrt{2}+\sqrt{3})-(\sqrt{3}-\sqrt{2})\)
\(=2\sqrt{2}\)
Bài 3:
a.
\(A=\frac{2}{\sqrt{x}+2}:\left[\frac{\sqrt{x}+2}{(\sqrt{x}-2)(\sqrt{x}+2)}-\frac{2}{(\sqrt{x}-2)(\sqrt{x}+2)}\right]\)
\(=\frac{2}{\sqrt{x}+2}:\frac{\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}=\frac{2}{\sqrt{x}+2}.\frac{(\sqrt{x}-2)(\sqrt{x}+2)}{\sqrt{x}}=\frac{2(\sqrt{x}-2)}{\sqrt{x}}\)
b. Khi $x=\frac{1}{4}$ thì $\sqrt{x}=\frac{1}{2}$.
Khi đó $A=\frac{2(\frac{1}{2}-2)}{\frac{1}{2}}=-6$
c.
$A=\frac{2(\sqrt{x}-2)}{\sqrt{x}}=2-\frac{4}{\sqrt{x}}$
$< 2$ do $\frac{4}{\sqrt{x}}>0$
Ta có đpcm
d. Với $x$ nguyên, để $A$ nguyên thì $\sqrt{x}$ là ước của $4$
$\Leftrightarrow \sqrt{x}\in\left\{1;2;4\right\}$
$\Rightarrow x\in\left\{1;4;16\right\}$ (đều tm)
Các cậu giúp bài này nhé, thầy tớ ra bài này khó quá. cảm ơn các cậu
Tìm x để các biểu thức sau có nghĩa
a) \(\sqrt{3x-2}-\frac{-1}{\sqrt{4-x}}\)
b) \(\frac{3}{\sqrt{2x-1}-2}\)
c) \(\frac{-2}{\sqrt{x^2}-4x^2+4}-\sqrt{-x-3}\)
a.\(DK:\frac{2}{3}\le x< 4\)
b.\(DK:x>\frac{1}{2},x\ne\frac{5}{2}\)
c.\(DK:x\le-3\)
Bạn MaiLink ơi, bạn có thể ghi rõ ra các bước làm được không? mình không hiểu lắm. cảm ơn bạn
Bài: Rút gọn biểu thức sau
1)(1-\(\dfrac{\sqrt{x}}{1-\sqrt{x}}\)):(\(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)-\(\dfrac{\sqrt{x}+2}{3-\sqrt{x}}\)+\(\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\))
2)(\(\dfrac{1}{\sqrt{x}+1}\)-\(\dfrac{2\sqrt{x}-2}{x\sqrt{x}-\sqrt{x}+x-1}\)):(\(\dfrac{1}{\sqrt{x}-1}\)-\(\dfrac{2}{x-1}\))
1: \(=\left(1+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)
\(=\dfrac{\sqrt{x}-1+\sqrt{x}}{\sqrt{x}-1}:\dfrac{x-9+x-4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{2x+\sqrt{x}-11}\)
\(=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(2x+\sqrt{x}-11\right)}\)
2: \(=\dfrac{x-1-2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(x-1\right)}:\dfrac{\sqrt{x}+1-2}{x-1}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(x-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{x-1}{\sqrt{x}-1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
Các bạn xem hộ mình xem đề bài có sai không nếu sai thì sửa thế nào nha.....Thầy mình cho về mắc quá......
Đề bài: Cho \(x,y\) thỏa mãn: \(x=\sqrt[3]{y-\sqrt{y^2+1}}+\sqrt[3]{y+\sqrt[3]{y^2+1}}\)
Tính \(A=x^4+x^3y+3x^2+xy-2y^2+1\).
Đề bài sửa thành \(x=\sqrt[3]{y-\sqrt{y^2+1}}+\sqrt[3]{y+\sqrt{y^2+1}}\)
hay \(x=\sqrt[3]{y-\sqrt[3]{y^2+1}}+\sqrt[3]{y+\sqrt[3]{y^2+1}}\)
Bài 1 :
Cho \(A=\dfrac{x}{\sqrt{x}-1}\\ B=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right)\div\left(\dfrac{2}{x}+\dfrac{x+2}{x\left(\sqrt{x}-1\right)}\right)\)
ĐKXĐ : x > 0 ; x ≠ 1
Tìm GTNN của \(\sqrt{A}\)
Bài 2 :
Cho \(A=\dfrac{\sqrt{x}-2}{3}\\ B=\dfrac{3x+4}{x-2\sqrt{x}}+\dfrac{2}{\sqrt{x}}-\dfrac{2\sqrt{x}}{\sqrt{x}-2}\)
Cho x ∈ N , tìm GTLN của \(\sqrt{B}\)
bài 1 : giải phương trình:
a. \(\sqrt{x+2\sqrt{ }x-1}=2\)
b. \(\sqrt{x^2-4x+4}=\sqrt{4x^212x+9}\)
c.\(\sqrt{x+4\sqrt{ }x-4}=2\)
d. \(\sqrt{x^2-6x+9}=2\)
e. \(\sqrt{x^2-3x+2}=\sqrt{x-1}\)
f. \(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\)
d) \(\sqrt{x^2-6x+9}=2\Leftrightarrow\sqrt{\left(x-3\right)^2}=2\Leftrightarrow x-3=2\Leftrightarrow x=5\)
e) đk: \(x\ge2\)\(\sqrt{x^2-3x+2}=\sqrt{x-1}\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}=\sqrt{x-1}\Leftrightarrow\sqrt{x-2}=1\Leftrightarrow x-2=1\Leftrightarrow x=3\)f) \(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\sqrt{\left(x-3\right)^2}\Leftrightarrow2x-1=x-3\Leftrightarrow x=-2\)
c: Ta có: \(\sqrt{x+4\sqrt{x-4}}=2\)
\(\Leftrightarrow\left|\sqrt{x-4}+2\right|=2\)
\(\Leftrightarrow x-4=0\)
hay x=4
a) \(\sqrt{x-1+2\sqrt{x-1}.1+1^2}=2;đk:x\)≥1
⇔\(\sqrt{\left(\sqrt{x-1}\right)^2+2\sqrt{x-1}.1+1^2}=2\left(hđt-1\right)\)
⇔\(\sqrt{\left(\sqrt{x-1}+1\right)^2=2}\)
⇔|\(\sqrt{x-1}+1\)|=2
⇔\(\left[{}\begin{matrix}\sqrt{x+1}-1=2\\\sqrt{x+1-1}=-2\end{matrix}\right.\)⇔\(\left[{}\begin{matrix}\sqrt{x+1}=3\\\sqrt{x+1}=-1\left(L\right)\end{matrix}\right.\)⇔x+1=9⇔x=10(TM)
→S={10}
Bài 1: Giải ptrình
a) \(-2\sqrt{2}x-1=2\sqrt{2}x^2+2x+3\)
b) \(x^2-2\sqrt{3}x-\sqrt{3}=2x^2+2x+\sqrt{3}\)
c) \(\sqrt{3}x^2+2\sqrt{5}x-3\sqrt{3}=-x^2-2\sqrt{3}x+2\sqrt{3}+1\)
a: =>\(x^2\cdot2\sqrt{2}+x\left(2+2\sqrt{2}\right)+4=0\)
\(\text{Δ}=\left(2\sqrt{2}+2\right)^2-4\cdot2\sqrt{2}\cdot4=12-24\sqrt{2}< 0\)
=>PTVN
b:
\(\Leftrightarrow2x^2+2x+\sqrt{3}-x^2+2\sqrt{3}x+\sqrt{3}=0\)
=>\(x^2+x\left(2\sqrt{3}+2\right)+2\sqrt{3}=0\)
\(\text{Δ}=\left(2\sqrt{3}+2\right)^2-4\cdot2\sqrt{3}=16>0\)
PT có hai nghiệm là;
\(\left\{{}\begin{matrix}x_1=\dfrac{-2\sqrt{3}-2-4}{2}=-\sqrt{3}-3\\x=\dfrac{-2\sqrt{3}-2+4}{2}=-\sqrt{3}+1\end{matrix}\right.\)
Bài 1: Tìm GTNN: \(A=\sqrt{x-1-2\sqrt{x-2}}+\sqrt{x+7-6\sqrt{x-2}}\)
Bài 2: giải phương trình: \(\frac{1}{\left(x-1\right)^2}+\sqrt{3x+1}=\frac{1}{x^2}+\sqrt{x+2}\)
Bài 1: Cho A = \(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
a) Rút gọn A
b) Tìm x để \(\left|A\right|>A\)
Bài 2: Cho B = \(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\dfrac{1}{\sqrt{x}-1}\)
a) Rút gọn B
b) Tìm tất cả các giá trị của x sao cho B<0