Những câu hỏi liên quan
H24
Xem chi tiết
BH
4 tháng 4 2016 lúc 20:43

Đặt \(u=\ln^2x\rightarrow du=2\ln x\frac{dx}{x},dv=\int\limits x^3dx\rightarrow v=\frac{1}{4}x^4\)

Do đó : \(I=\frac{1}{4}x^4.\ln^2x|^e_1-\frac{1}{4}\int\limits^e_12\ln x.\frac{x^4}{x}dx=\frac{e^4}{4}-\frac{1}{2}\int\limits^e_1x^3\ln sdx=\frac{e^4}{4}-\frac{1}{2}J\left(1\right)\)

Tính \(J=\int\limits^e_1x^3\ln xdx\)

Đặt \(u_1=\ln x\rightarrow du_1=\frac{dx}{x},dv_1=\int x^3dx\rightarrow v_1=\frac{1}{4}x^4\)

Do đó : 

\(J=\frac{1}{4}x^4\ln x|^e_1-\frac{1}{4}\int\limits^e_1x^3dx=\frac{e^4}{4}-\frac{1}{16}x^2|^e_1=\frac{3e^4+1}{16}\)

Thay vào (1) ta có :

\(I=\frac{e^4}{4}-\frac{1}{2}\left(\frac{3e^4+1}{16}\right)=\frac{5e^4-1}{32}\)

Bình luận (0)
SK
Xem chi tiết
PL
1 tháng 4 2017 lúc 23:49

Ôn tập cuối năm giải tích lớp 12

Bình luận (0)
CL
9 tháng 4 2017 lúc 10:26

Giải bài 11 trang 147 sgk Giải tích 12 | Để học tốt Toán 12

Bình luận (0)
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
HB
27 tháng 4 2017 lúc 18:02

Hỏi đáp Toán

Bình luận (0)
SK
Xem chi tiết
PD
Xem chi tiết
TA
8 tháng 4 2016 lúc 10:22

\(I=\int\limits^1_0\left(x+e^{2x}\right)xdx=\int\limits^1_0x^2dx+\int\limits^1_0xe^{2x}dx=I_1+I_2\)

\(I_1=\int\limits^1_0x^2dx=\frac{x^3}{3}|^1_0=\frac{1}{3}\)

Đặt \(\begin{cases}dv=e^{2x}dx\\u=x\end{cases}\) ta có \(\begin{cases}v=\frac{e^{2x}}{2}\\du=dx\end{cases}\)

\(I_2=\frac{xe^{2x}}{2}|^1_0-\int\limits^1_0\frac{e^{2x}}{2}dx=\left(\frac{xe^{2x}}{2}-\frac{e^{2x}}{4}\right)|^1_0=\frac{e^2+1}{4}\)

\(I=I_1+I_2=\frac{e^2+1}{4}+\frac{1}{3}=\frac{3e^2+7}{12}\)

Bình luận (0)
LT
Xem chi tiết
DT
4 tháng 4 2016 lúc 20:49

Đặt \(u=\ln\left(x^2-x\right)\rightarrow du=\frac{2x-1}{x^2-x}dx,dv=dx\rightarrow v=x\)

Do đó : \(I=x.\ln\left(x^2-x\right)|^3_2-\int\limits^3_2\frac{x\left(2x-1\right)}{x\left(x-1\right)}dx=3\ln6-2\ln2-\int\limits^3_2\frac{2x-2+1}{x-1}dx\)

               \(=\ln54-2\int\limits^3_2dx\frac{d\left(x-1\right)}{x-1}=\ln54-2-\ln\left(x-1\right)|^3_2=3\ln3-2\)

Bình luận (0)
NU
Xem chi tiết
BH
4 tháng 4 2016 lúc 20:33

Đặt \(u=\ln^3x\rightarrow du=3\ln^2x\frac{dx}{x},dv=dx\rightarrow v=x\)

Do đó : \(I=x\ln^3x|^e_1-3\int\limits^3_1\ln^2xdx=e-3J\left(1\right)\)

Tính \(J=\int\limits^e_1\ln^2xdx\)

Đặt \(u_1=\ln^2x\rightarrow du_1=\frac{2\ln x}{x}dx,dv_1=dx\rightarrow v_1=x\)

Do vậy, \(J=x\ln^2x|^e_1-2\int\limits^e_1\ln xdx=e-2\left(x\ln x|^e_1-\int\limits^e_1dx\right)=e-2\left(x\ln x-x\right)|^e_1=e-2\)

Thay vào (1) ta có : \(I=e-3\left(e-2\right)=6-2e\)

Bình luận (0)