Những câu hỏi liên quan
NH
Xem chi tiết
H24
30 tháng 1 2022 lúc 8:30

a) \(A=\dfrac{x+3}{x+2}=\dfrac{x-2+5}{x-2}=\dfrac{x-2}{x-2}+\dfrac{5}{x-2}=1+\dfrac{5}{x-2}\)

\(\Rightarrow5⋮x-2\Rightarrow x-2\inƯ\left(5\right)\)

\(Ư\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Rightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\\x-2=5\\x-2=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=1\\x=7\\x=-3\end{matrix}\right.\)

b) \(B=\dfrac{1-2x}{x+3}=\dfrac{-2x+1}{x+3}\)

\(B\in Z\Rightarrow-2x+1⋮x+3\)

\(\Rightarrow-2x-6+7⋮x+3\)

\(\Rightarrow-2\left(x+3\right)+7⋮x+3\)

\(\Rightarrow7⋮x+3\)

\(\Rightarrow x+3\inƯ\left(7\right)\)

\(Ư\left(7\right)=\left\{\pm1;\pm7\right\}\)

\(\Rightarrow\left[{}\begin{matrix}x+3=1\\x+3-1\\x+3=7\\x+3=-7\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=-4\\x=4\\x=-10\end{matrix}\right.\)

 

Bình luận (0)
NT
30 tháng 1 2022 lúc 8:29

\(A=\dfrac{x+3}{x-2}=\dfrac{x-2+5}{x-2}=1+\dfrac{5}{x-2}\)

Để \(A\in Z\) thì \(x-2\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

\(\Rightarrow x\in\left\{3;1;7;-3\right\}\)

Vậy \(x\in\left\{3;1;7;-3\right\}\) thì \(A\in Z\)

\(B=\dfrac{1-2x}{x+3}=\dfrac{-2x-6+7}{x+3}=\dfrac{-2\left(x+3\right)-7}{x+3}=-2+\dfrac{-7}{x+3}\)

Để \(B\in Z\) thì \(x+3\inƯ\left(-7\right)=\left\{1;-1;7;-7\right\}\)

\(\Rightarrow x\in\left\{-2;-4;4;10\right\}\)

Vậy \(x\in\left\{-2;-4;4;10\right\}\) thì \(B\in Z\)

Bình luận (1)
PD
Xem chi tiết
PK
9 tháng 6 2016 lúc 15:42

a) \(A=\frac{x+3}{x-2}=\frac{x-2+5}{x-2}=1+\frac{5}{x-2}\)
để A \(\in\) Z thì  x - 2 là ước của 5. 
=> x – 2 \(\in\left\{\pm1;\pm5\right\}\)
*  x = 3  =>  A = 6

*  x = 7  =>  A = 2 
*  x = 1  =>  A = - 4

*  x = -3  =>  A = 0 
b)  \(A=\frac{1-2x}{x+3}=\frac{7-2x-6}{x+3}=\frac{7-2\left(x+3\right)}{x+3}=\frac{7}{x+3}-2\)
- 2 để A \(\in\) Z thì  x + 3 là ước của7. 
=> x + 3 \(\in\left\{\pm1;\pm7\right\}\)
*  x = -2  =>  A = 5

*  x = 4  =>  A = -1 
*  x = -4   =>  A = - 9

*  x = -10  =>  A = -3 . 

 

Bình luận (2)
NN
Xem chi tiết
H24
30 tháng 1 2022 lúc 10:05

undefined

Bình luận (0)
H24
30 tháng 1 2022 lúc 10:13

undefined

Bình luận (0)
HH
Xem chi tiết
HH
Xem chi tiết
NT
Xem chi tiết
LD
10 tháng 12 2020 lúc 22:27

\(A=\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right)\div\left(\frac{x^2-2x}{x^3-x^2+x}\right)\)

a) ĐKXĐ : \(\hept{\begin{cases}x\ne-1\\x\ne2\end{cases}}\)

 \(=\left(\frac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{1}{x^2-x+1}-\frac{2}{x+1}\right)\div\left(\frac{x\left(x-2\right)}{x\left(x^2-x+1\right)}\right)\)

\(=\left(\frac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{1\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right)\div\frac{x-2}{x^2-x+1}\)

\(=\left(\frac{x+1+x+1-2x^2+2x-2}{\left(x+1\right)\left(x^2-x+1\right)}\right)\times\frac{x^2-x+1}{x-2}\)

\(=\frac{-2x^2+4x}{\left(x+1\right)\left(x^2-x+1\right)}\times\frac{x^2-x+1}{x-2}\)

\(=\frac{-2x\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}=\frac{-2x}{x+1}\)

b) \(\left|x-\frac{3}{4}\right|=\frac{5}{4}\)

<=> \(\orbr{\begin{cases}x-\frac{3}{4}=\frac{5}{4}\\x-\frac{3}{4}=-\frac{5}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\left(loai\right)\\x=-\frac{1}{2}\left(nhan\right)\end{cases}}\)

Với x = -1/2 => \(A=\frac{-2\cdot\left(-\frac{1}{2}\right)}{-\frac{1}{2}+1}=2\)

c) Để A ∈ Z thì \(\frac{-2x}{x+1}\)∈ Z

=> -2x ⋮ x + 1

=> -2x - 2 + 2 ⋮ x + 1

=> -2( x + 1 ) + 2 ⋮ x + 1

Vì -2( x + 1 ) ⋮ ( x + 1 )

=> 2 ⋮ x + 1

=> x + 1 ∈ Ư(2) = { ±1 ; ±2 }

x+11-12-2
x0-21-3

Các giá trị trên đều tm \(\hept{\begin{cases}x\ne-1\\x\ne2\end{cases}}\)

Vậy x ∈ { -3 ; -2 ; 0 ; 1 }

Bình luận (0)
 Khách vãng lai đã xóa
DA
Xem chi tiết
SK
Xem chi tiết
TT
Xem chi tiết