Tinh tong:
B= 3^2/11.8 + 3^2/11.14 + 3^2/14.17 + ... 3^2/197.200
\(\dfrac{3^2}{8.11}+\dfrac{3^2}{11.14}+\dfrac{3^2}{14.17}+....+\dfrac{3^2}{197.200}\)
\(\dfrac{3^2}{8.11}+\dfrac{3^2}{11.14}+...+\dfrac{3^2}{197.200}\)
=\(3.\left(\dfrac{3}{8.11}+\dfrac{3}{11.14}+...+\dfrac{3}{197.200}\right)\)
=\(3.\left(\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{197}-\dfrac{1}{200}\right)\)
=\(3.\left(\dfrac{1}{8}-\dfrac{1}{200}\right)\)
=\(3.\dfrac{3}{25}=\dfrac{9}{25}\)
Ta có: \(\dfrac{3^2}{8\cdot11}+\dfrac{3^2}{11\cdot14}+\dfrac{3^2}{14\cdot17}+...+\dfrac{3^2}{197\cdot200}\)
\(=3\left(\dfrac{3}{8\cdot11}+\dfrac{3}{11\cdot14}+\dfrac{3}{14\cdot17}+...+\dfrac{3}{197\cdot200}\right)\)
\(=3\left(\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{197}-\dfrac{1}{200}\right)\)
\(=3\left(\dfrac{1}{8}-\dfrac{1}{200}\right)\)
\(=3\cdot\dfrac{24}{200}=\dfrac{72}{200}=\dfrac{9}{25}\)
Tính tổng: \(B=\frac{3^2}{8.11}+\frac{3^2}{11.14}+\frac{3^2}{14.17}+...+\frac{3^2}{197.200}\)
\(B=\frac{9}{8\cdot11}+\frac{9}{11\cdot14}+...+\frac{9}{197\cdot200}\)
\(=3\left(\frac{3}{8\cdot11}+\frac{3}{11\cdot14}+...+\frac{3}{197\cdot200}\right)\)
\(=3\left(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{197}-\frac{1}{200}\right)\)
\(=3\left(\frac{1}{8}-\frac{1}{200}\right)\)
\(=3\left(\frac{24}{200}-\frac{1}{200}\right)\)
\(=3\cdot\frac{23}{200}\)
đúng
\(\Rightarrow B=3\left(\frac{3}{8.11}\right)+3\left(\frac{3}{11.14}\right)+..+3\left(\frac{3}{197.200}\right)\)
\(\Rightarrow B=3\left(\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{197.200}\right)\)
\(\Rightarrow B=3\left(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{197}-\frac{1}{200}\right)\)
\(\Rightarrow B=3\left(\frac{1}{8}-\frac{1}{200}\right)=3.\frac{3}{25}=\frac{9}{25}\)
Vậy \(B=\frac{9}{25}\)
Chúc bn học tốt..!
Tính tổng sau:
C=32/8.11 + 32/11.14 + 32/14.17 + ....+ 32/197.200
Tính tổng sau :
C=32/8.11 + 32/11.14 + 32/14.17 + ...... + 32/197.200
Ta có :
\(C=\frac{3^2}{8.11}+\frac{3^2}{11.14}+\frac{3^2}{14.17}+...+\frac{3^2}{197.200}\)
\(C=3\left(\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+...+\frac{3}{197.200}\right)\)
\(C=3\left(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+...+\frac{1}{197}-\frac{1}{200}\right)\)
\(C=3\left(\frac{1}{8}-\frac{1}{200}\right)\)
\(C=3.\frac{3}{25}\)
\(C=\frac{9}{25}\)
Chúc bạn học tốt ~
Tính tổng
B=32/8.11 +32/11.14+32/14.17+...+32/197.200
TÝnh:
N = 32/8.11 + 32/11.14 + 32/14.17 + ...+32/197.200.
N=3(3/8.11 +3 /11.14 + 3/14.17 +...+3/197.200)
N=3( 1/8-1/11+1/11-1/14+1/14-1/17+...+1/197-1/200)
N=3(1/8-1/200)
N=3. 3/25=9/25
Ủng hộ mk nha
\(\Rightarrow N=\frac{9}{8.11}+\frac{9}{11.14}+\frac{9}{14.17}+....+\frac{9}{197.200}\)
\(\Rightarrow N=\frac{9}{3}\left(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{197}-\frac{1}{200}\right)\)
\(\Rightarrow N=3\left(\frac{1}{8}-\frac{1}{200}\right)=\frac{3}{8}-\frac{3}{200}=\frac{75}{200}-\frac{3}{200}=\frac{72}{200}=\frac{9}{25}\)
N = 32/8.11 + 32/11.14 + 32/14.17 + ...+32/197.200.
\(\frac{3^2}{8.11}\) +\(\frac{3^2}{11.14}\)+\(\frac{3^2}{14.17}\)+...+\(\frac{3^2}{197.200}\)
Đặt \(A=\frac{3^2}{8.11}+\frac{3^2}{11.14}+\frac{3^2}{14.17}+...+\frac{3^2}{197.200}\)
\(\Leftrightarrow A=\frac{9}{8.11}+\frac{9}{11.14}+\frac{9}{14.17}+...+\frac{9}{197.200}\)
\(\Leftrightarrow\frac{1}{3}A=\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+...+\frac{3}{197.200}\)
\(\Leftrightarrow\frac{1}{3}A=\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{2}{17}+...+\frac{1}{197}-\frac{1}{200}\)b
\(\Leftrightarrow\frac{1}{3}A=\frac{1}{8}-\frac{1}{200}\)
\(\Leftrightarrow\frac{1}{3}A=\frac{24}{200}\)
\(\Leftrightarrow A=\frac{24}{200}\times3\)
\(\Leftrightarrow A=\frac{72}{200}=\frac{9}{25}\)
\(=\frac{3.3}{8.11}+\frac{3.3}{11.14}+...+\frac{3.3}{197.200}\)
\(=3(\frac{3}{8.11}+\frac{3}{11.14}+..+\frac{3}{197.200})\)
\(=3(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{197}-\frac{1}{200})\)
\(=3(\frac{1}{8}-\frac{1}{200})\)
\(=3(\frac{200}{1600}-\frac{8}{1600})\)
\(=3.\frac{192}{1600}\)
\(=\frac{576}{1600}\)
[\(\frac{2000}{2000.2006}+\frac{2000}{2006.2012}+\frac{2000}{2012.2018}+.....+\frac{2000}{2492.2498}\)]x\(\frac{^{3^2}}{8.11}+\frac{3^2}{11.14}+\frac{3^2}{14.17}+.....+\frac{3^2}{197.200}\)
\(\left[\frac{2000}{2000.2006}+\frac{2000}{2006.2012}+...+\frac{2000}{2492.2498}\right]\times\left[\frac{3^2}{8.11}+\frac{3^2}{11.14}+\frac{3^2}{14.17}+...+\frac{3^2}{197.200}\right]\)
\(=\left[\frac{2000}{6}\cdot\left(\frac{1}{2000}-\frac{1}{2006}+...+\frac{1}{2492}-\frac{1}{2498}\right)\right]\times\left[\frac{9}{8.11}+\frac{9}{11.14}+...+\frac{9}{197.200}\right]\)
\(=\left[\frac{2000}{6}\cdot\left(\frac{1}{2000}-\frac{1}{2498}\right)\right]\times\left[\frac{9}{3}\cdot\left(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+..+\frac{1}{197}-\frac{1}{200}\right)\right]\)
\(=\left[\frac{2000}{6}\cdot\frac{498}{4996000}\right]\times\left[\frac{9}{3}\cdot\left(\frac{1}{8}-\frac{1}{200}\right)\right]\)
\(=\frac{83}{2498}\times\left[\frac{9}{3}\cdot\frac{3}{25}\right]\)
\(=\frac{83}{2498}\times\frac{9}{25}=\frac{747}{62450}\)
\(\frac{5}{1.4}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}
\)
\(\frac{3^2}{8.11}+\frac{3^2}{11.14}+\frac{3^2}{14.17}+...+\frac{3^2}{197.200}\)
lúc đầu ý bn là 5/1.3 đúng k, mk chỉnh lại như thế cho tiện nhé
a) \(\frac{5}{1\times3}+\frac{5}{3\times5}+\frac{5}{5\times7}+...+\frac{5}{99\times101}\)
\(=\frac{5}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{5}{2}\left(1-\frac{1}{101}\right)\)
\(=\frac{5}{2}\times\frac{100}{101}=\frac{250}{101}\)
b) \(\frac{3^2}{8\times11}+\frac{3^2}{11\times14}+\frac{3^2}{14\times17}+...+\frac{3^2}{197\times200}\)
\(=\frac{9}{8\times11}+\frac{9}{11\times14}+\frac{9}{14\times17}+...+\frac{9}{197\times200}\)
\(=3\left(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+...+\frac{1}{197}-\frac{1}{200}\right)\)
\(=3\left(\frac{1}{8}-\frac{1}{200}\right)\)
\(=3\times\frac{3}{25}=\frac{9}{25}\)
Ta có \(\frac{3^2}{8.11}+\frac{3^2}{11.14}+...+\frac{3^2}{197.200}\)
\(\Rightarrow3^2.\left(\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{197.200}\right)\)
\(\Rightarrow9.\frac{1}{3}.\left(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{197}-\frac{1}{200}\right)\)
\(\Rightarrow3.\left(1-\frac{1}{200}\right)\)
\(\Rightarrow3.\frac{199}{200}=\frac{597}{200}\)
a) \(\frac{5}{1.3}+\frac{5}{3.5}+...+\frac{5}{99.101}\)
\(=\frac{5}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{5}{2}\left(1-\frac{1}{101}\right)\)
\(=\frac{5}{2}.\frac{100}{101}\)
\(=\frac{250}{101}\)