Những câu hỏi liên quan
BT
Xem chi tiết
BT
Xem chi tiết
BT
Xem chi tiết
VT
19 tháng 3 2016 lúc 8:05

kksjknkjkjdcrfbucminh

Bình luận (0)
BT
Xem chi tiết
BT
Xem chi tiết
H24
18 tháng 3 2016 lúc 18:53

 Gọi I(a,b) là tâm của đường tròn 
vì đường tròn tiếp xúc với 2 trục tọa độ nên tâm I nằm trên 1 trong các tia phân giác của các trục, nói cách khác là I cách đều hai trục tọa độ => |a| = |b| 
nhận xét: đường tròn tiếp xúc với 2 trục tọa độ nên cả hình tròn nằm trong 1 trong 4 góc của hệ trục, lại có A(2, -1) thuộc phần tư thứ IV => tâm I thuộc phần tư thứ IV => a > 0, b < 0 
như vậy tọa độ tâm là I(a, -a), bán kính R = a, với a > 0 

ptrình đường tròn: (x-a)² + (y+a)² = a² 
A(2, -1) thuộc đtròn <=> (2-a)² + (-1+a)² = a² <=> a² - 6a + 5 = 0 <=> a = 1 hoặc a = 5 

Vậy có 2 đường tròn thỏa yêu cầu là: (x-1)² + (y+1)² = 1 hoặc (x-5)² + (y-5)² = 25 

Bình luận (0)
BT
18 tháng 3 2016 lúc 18:59

bn ơi , điểm có tọa độ là (2,1) mà bn , nhầm rùi kìa 

 

Bình luận (0)
SD
18 tháng 3 2016 lúc 20:01

Bạn ơi,tại bạn này chép lời giải trên mạng nên chưa kịp sửa.

Bình luận (0)
BT
Xem chi tiết
PB
Xem chi tiết
CT
24 tháng 5 2018 lúc 15:10

Đáp án A

Gọi phương trình đường tròn (C) : (x-a)2+ (y- b) 2= R2

Do (C) tiếp xúc với các trục tọa độ nên  điểm A( 2; 4) thuộc (C) nằm trong góc phần tư thứ nhất nên I( a; b) cũng ở góc phần tư thứ nhất.

Suy ra a= b= R > 0.

 Vậy (C) : (x-a) 2+ ( y-a) 2= a2.

Do A thuộc C nên ( 2-a) 2+ (4-a) 2 = a2 hay a2-12a + 20 = 0

Bình luận (0)
QL
Xem chi tiết
HM
27 tháng 9 2023 lúc 0:10

Gọi tâm của đường tròn là điểm \(I(a;b)\)

Ta có: \(IA = \sqrt {{{\left( {a - 4} \right)}^2} + {{\left( {b - 2} \right)}^2}} ,d\left( {I,Ox} \right) = b,d\left( {I,Oy} \right) = a\)

Giải hệ phương trình \(\left\{ \begin{array}{l}d\left( {I,Ox} \right) = IA\\d\left( {I,Oy} \right) = IA\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = \sqrt {{{\left( {a - 4} \right)}^2} + {{\left( {b - 2} \right)}^2}} \\a = \sqrt {{{\left( {a - 4} \right)}^2} + {{\left( {b - 2} \right)}^2}} \end{array} \right.\)

Thay \(a = b\) vào phương trình \(a = \sqrt {{{\left( {a - 4} \right)}^2} + {{\left( {b - 2} \right)}^2}} \) ta có:

\(\begin{array}{l}a = \sqrt {{{\left( {a - 4} \right)}^2} + {{\left( {a - 2} \right)}^2}} \\ \Rightarrow {a^2} = {\left( {a - 4} \right)^2} + {\left( {a - 2} \right)^2}\\ \Rightarrow {a^2} - 12a + 20 = 0\\ \Rightarrow \left[ \begin{array}{l}a = 10\\a = 2\end{array} \right. \end{array}\)

Với \(a = b = 2\) ta có phương trình đường tròn (C) là: \({\left( {x - 2} \right)^2} + {\left( {y - 2} \right)^2} = 4\)

Với \(a = b = 10\) ta có phương trình đường tròn (C) là: \({\left( {x - 10} \right)^2} + {\left( {y - 10} \right)^2} = 100\)

Bình luận (0)
PB
Xem chi tiết
CT
13 tháng 5 2017 lúc 14:45

Đáp án: B

Vì đường tròn tiếp xúc với hai trục tọa độ và đi qua điểm (3;1) nên đường tròn sẽ nằm ở góc phần tư thứ nhất ⇒ I(a;a), R = a (a > 0)

⇒ (x - a ) 2  + (y - a ) 2  =  a 2

Vì điểm (3;1) thuộc đường tròn

⇒ (2 - a ) 2  + (1 - a ) 2  =  a 2  ⇔  a 2  - 6a + 5 = 0

Đề kiểm tra 15 phút Hình học 10 Chương 3 có đáp án (Đề 4)

Bình luận (0)