Tìm x biết :
a, \(\left|\left|2x-1\right|-\frac{1}{2}\right|=\frac{4}{5}\)
tìm x biết
a, ( 2x - 3 ) ( x + 1 ) <0
b, ( x - \(\frac{1}{2}\) ) ( x + 3) >0
c,\(\frac{3}{\left(x+3\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
biết không thuộc { -2, -5 ,-10 ,-17 }
a)\(\left(2x-3\right)\left(x+1\right)< 0\)
\(\Leftrightarrow\begin{cases}2x-3>0\\x+1< 0\end{cases}\) hoặc \(\begin{cases}2x-3< 0\\x+1>0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>\frac{3}{2}\\x< -1\end{cases}\) (loại) hoặc \(\begin{cases}x< \frac{3}{2}\\x>-1\end{cases}\)
\(\Leftrightarrow-1< x< \frac{3}{2}\)
b) \(\left(x-\frac{1}{2}\right)\left(x+3\right)>0\)
\(\Leftrightarrow\begin{cases}x-\frac{1}{2}>0\\x+3>0\end{cases}\) hoặc \(\begin{cases}x-\frac{1}{2}< 0\\x+3< 0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>\frac{1}{2}\\x>-3\end{cases}\) hoặc \(\begin{cases}x< \frac{1}{2}\\x< -3\end{cases}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x>\frac{1}{2}\\x< -3\end{array}\right.\)
c) Sai đề phải là \(\frac{x}{\left(x+3\right)\left(x+7\right)}\)
Có: \(\frac{3}{\left(x+3\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+3\right)\left(x+17\right)}\)
\(\Leftrightarrow\)\(\frac{1}{x+3}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+7}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)
\(\Leftrightarrow\)\(\frac{1}{x+3}-\frac{1}{x+7}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)
\(\Leftrightarrow\)\(\frac{4}{\left(x+3\right)\left(x+7\right)}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)
\(\Leftrightarrow x=4\)
tìm x biết
\(a,2\frac{1}{3}+\left(x-\frac{3}{2}\right)=\left(3-\frac{3}{2}\right).x\)
\(b,\frac{3}{2}:\left(x-1\frac{2}{3}\right)-5\frac{2}{3}=2\frac{5}{3}\)
\(c,\left(\frac{7}{2}-2x\right):3\frac{2}{5}+1\frac{4}{5}=7\frac{6}{5}\)
a) Tính \(A=\left(0,25\right)^{-1}.\left(\frac{1}{4}\right)^{-2}.\left(\frac{4}{3}\right)^{-2}.\left(\frac{5}{4}\right)^{-1}.\left(\frac{2}{3}\right)^{-3}\)
b) Tìm só nguyên n,biết :\(^{2^{-1}.2^n+4.2^n=9.2^5}\)
b, \(2^n\left(2^{-1}+4\right)=9\cdot2^5\)
=> \(2^n\cdot\frac{9}{2}=9\cdot2^5\)
=> \(2^n=2^6\)
Vậy \(n=6\left(tm\right)\)
a, \(A=4\cdot16\cdot\frac{9}{16}\cdot\frac{4}{5}\cdot\frac{27}{8}=\frac{486}{5}=97,2\)
a)
\(A=\left(0,25\right)^{-1}\cdot\left(\frac{1}{4}\right)^{-2}\cdot\left(\frac{4}{3}\right)^{-2}\cdot\left(\frac{5}{4}\right)^{-1}\cdot\left(\frac{2}{3}\right)^{-3}\)
\(A=4\cdot16\cdot\frac{9}{16}\cdot\frac{4}{5}\cdot\frac{27}{8}=\frac{4\cdot16\cdot9\cdot4\cdot27}{16\cdot5\cdot8}=\frac{9\cdot2\cdot27}{5}=\frac{486}{5}\)
b)
2-1.2n+4.2n=9.25
(1/2+4).2n=288
2n=288:(1/2+4) =64
=>2n=26
=> n = 6
Tìm x: \(\left|x-5\right|+\frac{\left(x-1\right)\left(x-3\right)}{2}=\frac{\left(x+1\right)^2}{3}-\frac{\left(1-2x\right)^2}{4}\)
Tìm x : \(\frac{2\left(x-1\right)\left(x-3\right)}{3}-\frac{4\left(2x-1\right)^2}{5}=\frac{\left(1+3x\right)^2}{2}-3x\left(1-x\right)\)
\(\Leftrightarrow20\left(x^2-4x+3\right)-24\left(4x^2-4x+1\right)=15\left(9x^2+6x+1\right)+90x\left(x-1\right)\)
\(\Leftrightarrow20x^2-80x+60-96x^2+96x-24=135x^2+90x+15+90x^2-90x\)
\(\Leftrightarrow-301x^2+16x+21=0\)
\(\text{Δ}=16^2-4\cdot\left(-301\right)\cdot21=25540\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là
\(\left\{{}\begin{matrix}x_1=\dfrac{-16-\sqrt{25540}}{-602}=\dfrac{16+\sqrt{25540}}{602}\\x_2=\dfrac{16-\sqrt{25540}}{602}\end{matrix}\right.\)
Tìm x
a) \(\left(x+1\right)-\frac{x+1}{3}=\frac{5\left(x+1\right)-1}{6}\)
b) \(\left(1-x\right)^2+\left(x+2\right)^2=2x\left(x-3\right)-7\)
c) \(2+\frac{x-2}{2}-\frac{2x-4}{3}-\frac{5}{6}\left(2-x\right)=0\)
a) \(\left(x+1\right)-\frac{x+1}{3}=\frac{5\left(x+1\right)-1}{6}\)
\(\Leftrightarrow6\left(x+1\right)-2\left(x+1\right)=5\left(x+1\right)-1\)
\(\Leftrightarrow6x+6-2x-2=5x+5-1\)
\(\Leftrightarrow6x-2x-5x=5-1-6+2\)
\(\Leftrightarrow-x=0\)
\(\Leftrightarrow x=0\)
b) \(\left(1-x\right)^2+\left(x+2\right)^2=2x\left(x-3\right)-7\)
\(\Leftrightarrow1-2x+x^2+x^2+4x+4=2x^2-6x-7\)
\(\Leftrightarrow2x^2+2x+5=2x^2-6x-7\)
\(\Leftrightarrow2x+6x=-7-5\)
\(\Leftrightarrow8x=-12\)
\(\Leftrightarrow x=-\frac{3}{2}\)
c) \(2+\frac{x-2}{2}-\frac{2x-4}{3}-\frac{5}{6}\left(2-x\right)=0\)
\(\Leftrightarrow2+\frac{x}{2}-1-\frac{2}{3}x+\frac{4}{3}-\frac{5}{3}+\frac{5}{6}x=0\)
\(\Leftrightarrow\frac{x}{2}-\frac{2}{3}x+\frac{5}{6}x=-2+1-\frac{4}{3}+\frac{5}{3}\)
\(\Leftrightarrow\frac{2}{3}x=-\frac{2}{3}\)
\(\Leftrightarrow x=-1\)
1 Tìm x:
( \(3x-2\frac{1}{3}\)):( \(3\frac{1}{4}-5\frac{2}{3}+1\frac{4}{5}\)) = \(2-1\frac{1}{3}x\)
2. Tìm x:
\(\frac{x+\frac{2\left(3-x\right)}{5}}{14}-\frac{5x-4\left(x-1\right)}{24}=\frac{7x+2+\frac{9-3x}{5}}{12}+\frac{2}{3}\)
3. Tìm x:
\(\left(1+3x\right)^2-3x\left(2x+6\right)=\left(4-3x\right)\left(x+3\right)-\left(2x-1\right)^2\)
1) \(x=\frac{99}{196}\)
2) \(x=-2\)
3) \(x\approx-0,59\)
giup mk giải rõ dc ko
Tìm x : \(\frac{2\left(x-1\right)\left(x-3\right)}{3}-\frac{4\left(2x-1\right)^2}{5}=\frac{\left(1+3x\right)^2}{2}-3x\left(1-x\right)\)
tìm x biết
\(\frac{3}{\left(x+2\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+12\right)\left(x+17\right)}\)
biết x không thuộc { -2 , -5 ,-10 , -17 ]