Những câu hỏi liên quan
NL
Xem chi tiết
AO
28 tháng 1 2018 lúc 21:12

bạn ơi đề khó nhìn vậy  

Bình luận (0)
NL
28 tháng 1 2018 lúc 21:51
bạn giúp mk vs đk k bạn
Bình luận (0)
H24
Xem chi tiết
HT
Xem chi tiết
NL
Xem chi tiết
AH
4 tháng 7 2021 lúc 12:52

Lời giải:

$2xyz=x+y+z$

$2=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}$

Không mất tổng quát giả sử $x\geq y\geq z$ 

$\Rightarrow xy\geq xz\geq yz$

$\Rightarrow \frac{1}{xy}\leq \frac{1}{xz}\leq \frac{1}{yz}$

$\Rightarrow 2\leq \frac{3}{yz}$$

$\Rightarrow yz\leq \frac{3}{2}$. Mà $yz$ nguyên dương nên $yz=1$

$\Rightarrow y=z=1$. Thay vào pt ban đầu:

$2x=x+2$

$x=2$

Vậy $(x,y,z)=(2,1,1)$ và hoán vị.

Bình luận (0)
NH
Xem chi tiết
PB
24 tháng 2 2023 lúc 19:44

Bình luận (0)
QA
Xem chi tiết
QA
Xem chi tiết
QA
22 tháng 8 2021 lúc 20:20

Hồng Phúc CTV, Nguyễn Việt Lâm

Bình luận (0)
TD
Xem chi tiết
TL
8 tháng 8 2016 lúc 13:40

\(x^2+y^2+z^2=2xyz\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+z^2=0\)

\(\Leftrightarrow\left(x-y\right)^2+x^2=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x-y=0\\z=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=y\\z=0\end{array}\right.\)

Bình luận (0)
HN
8 tháng 8 2016 lúc 20:02

2xyz chứ có phải 2xy đâu :)

Bình luận (0)
HN
Xem chi tiết
LD
24 tháng 4 2016 lúc 17:32

Câu hỏi không rõ nhé bạn. bạn hỏi đầy đủ hơn

Bình luận (0)